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Abstract We study the phenomena of x-ray powder-pattern diffraction in different alloys to verify Vegard’s 
Law for copper-nickel alloys and use these findings to determine the nickel content of some American and 
Canadian nickel coins. We find that American nickels contain (25.95 ± 4.43)% nickel, 1979 Canadian 
nickels contain (101.05 ± 4.11)% nickel, and 1984 Canadian nickels contain (30.53 ± 4.42)% nickel. The 
same techniques are also used to identify an unknown sample, and by comparing our measurements against 
the theoretical expectations of various metals with similar properties, we determine our unknown sample to 
be Molybdenum. 

 

I. INTRODUCTION AND THEORY 
When a collimated beam of x-rays strike pairs of parallel 
lattice planes in a crystal, each atom acts as a scattering 
center and emits a secondary wave (see Figure 1). Under 
specific conditions, the reflected radiation off of these peaks 
will constructively interfere with one another, and the 
phenomena is described by Bragg’s Law: 
 

𝑛l = 	2𝑑!"#sin	(𝜃) 
 
Here, l is the wavelength of the x-ray beam, 𝜃 is the angle 
of incidence with respect to the Bragg plane, 𝑛 is an integer 
representing the diffraction order, and 𝑑!"# represents the 
distance between adjacent Bragg planes. Bragg planes are 
the set of equidistant parallel planes that pass through all the 
atoms in the crystal, and are represented by the Miller indices 
h, k, and l. The h, k, and l Miller indices correspond 
respectively to the x, y, and z components of a vector 
perpendicular to the plane. Figure 2 shows different sets of 
Bragg planes and their corresponding Miller indices.  
 

 
Figure 1: Visual representation of x-ray diffraction and Bragg’s 

Law. The x-ray beam is incident on parallel Bragg planes and 
results in a diffraction pattern under certain conditions.  

 

 
Figure 2: Bragg planes in a cubic solid 

For cubic crystals, the distance between adjacent Bragg 
planes is: 
 

𝑑!"# =
𝑎

√ℎ$ + 𝑘$ + 𝑙$
 

 
The lattice constant a represents the distance between ions at 
the corners of the cube. Each cubic crystal has multiple sets 
of Bragg planes (coming from different allowed 
combinations of Miller indices), which account for the 
multiple peaks that are seen when the x-ray beams hits the 
crystal at different angles. 
 
The ions in crystalline materials take up specific positions in 
a lattice formation. Crystalline structures come in several 
forms, such as the simplest cubic structure, the body-
centered cubic (BCC) structure, the face-centered cubic 
(FCC) structure, and the FCC diamond structure. 
 



 

In this experiment, we test how the lattice constant varies for 
different alloys of copper in nickel. Since copper is totally 
soluble in nickel, copper-nickel alloys can be formed with 
any ratio. Given that we know the lattice constants of copper 
and nickel, and x is the number fraction of copper ions 
between 0 and 1, Vegard’s Law gives us the lattice constant 
of the copper-nickel alloy: 
 

𝑎%##&' = 	𝑥𝑎() + (1 − 𝑥)𝑎*+ 
 
The magnetism of the copper-nickel alloy can also be 
predicted, as copper by itself is nonmagnetic, and nickel is a 
magnetic element with a Curie point of 𝑇( = 368°. The 
Curie point of 𝐶𝑢,𝑁-., alloys is: 
 

𝑇( = 368 − 1170𝑥	(°𝐶) 
 
Implying that samples with more than 30% copper are not 
magnetic at room temperature. 
 
To study x-ray diffraction in crystals, both the Laue method 
and the power method can be used. For the Laue method, an 
x-ray beam with a continuous distribution of x-ray 
wavelengths is used with a single crystal sample. The 
incident beam then makes the same angle with all parts of 
the sample and the angle of incidence is fixed. The Laue 
method is useful in studying crystals but can be hard to 
interpret. In contrast, the powder method uses 
monochromatic x-rays on a finely powdered sample. Even 
though this forces the wavelength to be fixed, it is still able 
to produce the diffraction pattern since the many small 
crystallites are randomly oriented. A detector is rotated from 
0° to 180° around the sample, while the sample itself rotates 
from 0° to 90° to measure all angles. The benefit of using the 
powder method is it is easier to interpret and produces a more 
accurate spectrum. For this experiment, we use the powder 
method to study x-ray diffraction spectrums and analyze the 
composition of different alloys. 
 
This experiment uses characteristic x-rays as opposed to 
bremsstrahlung. To produce the x-rays in this experiment, a 
beam of electrons is accelerated across a large potential 
difference into a water-cooled copper target. If the electrons 
pass close enough to the nuclei in the target, they are 
deflected and slowed down by the attractive force of the 
nucleus in a process called bremsstrahlung. The lost kinetic 
energy appears as an x-ray photon, where each photon can 
have a different amount of energy, leading to a continuous 
distribution of bremsstrahlung wavelengths. In comparison, 
characteristic x-rays are formed when the high-speed 
electrons collide with orbital electrons in the target, 
knocking the orbital electrons out. A higher energy level 
electron then takes its place and emits the extra energy as an 

 
1 The goniometer sweeps in the direction of decreasing 2𝜃. 

x-ray photon.  Consequently, characteristic x-rays provide 
narrower lines that are more useful for the powder method.  
 
Finally, as crystal structure becomes increasingly symmetric, 
x-rays diffracted from some planes experience total 
destructive interference. This is why for BCC and FCC 
structure, which are more complex cubic structures, not all 
peaks will show up that would appear for a solid with a 
simple cubic structure. The indices where total destructive 
interference occurs are called “missing lines/peaks”. 
Diamond structures have even more missing lines than FCC 
structures, since their structures look like two interlapping 
FCC structures. 
 

II. APPARATUS AND PROCEDURE 
The experimental apparatus can be seen in Figure 3 below. 
The device used to perform the experiment was a Rigaku 30 
kV Miniflex powder pattern x-ray spectrometer. The sample 
to be studied is swept by the built-in goniometer through an 
angle 𝜃 with respect to the x-ray beam, while the detector is 
swept through an angle of 2𝜃1. 
 

 
Figure 3: A schematic of the experimental setup viewed from 

above 

In order to accurately determine the 2𝜃 angle at which there 
was a detected index line (a peak), we decided to use a 
gaussian fit to each individual peak. The overall shape and 
behavior of these peaks closely resembled gaussian 
behavior, and since gaussian functions are symmetric, we 
could simply use the maximum value of the fit to determine 
the 2𝜃 angle. This method turned out to be very accurate 
since the number of data points used in the fit was large 
(~30000). 
 
The first thing to do for the experiment was to find the x-ray 
spectrum for a silicon sample from 20° to 80° at 2° per 
minute. Given that silicon has a diamond structure with a 
lattice constant of 5.4309 Å, the theoretical values for where 
the peaks should appear can be calculated with Bragg’s Law. 
The comparison between theoretical and experimental 
values serve as a reference for the remainder of the 
experiment to help determine errors in the system and setup. 
 
Once the silicon x-ray spectrum was recorded, a full sweep 
(from 0° to 160° at 2°/min) of a Cu-Si sample was taken to 



 

establish the full spectrum of copper. Due to the difference 
in reaction time between starting the data collection and 
starting the goniometer, the presence of the silicon peaks was 
used to shift the whole measured spectrum comparing to 
their theoretical values. After the shift, the copper peaks 
were then compared to their theoretical values, which were 
calculated using the known lattice constant of 3.6153 Å (see 
[1]). The predicted values of 2𝜃 can be seen in Table 1. 
 

Copper (𝑎 = 3.6153	Å, 𝜆 = 1.5418	Å) 
Index 

	
𝜆√ℎ$ + 𝑘$ + 𝑙$

2𝑎  
2𝜃 (degrees) 

111 0.369 43.349 
200 0.426 50.487 
220 0.603 74.186 
311 0.707 90.017 
222 0.739 95.235 
400 0.853 117.064 
331 0.929 136.701 
420 0.954 144.958 

Table 1: Calculated expectations of 2𝜃 for copper. 

A similar process was then performed for a Ni-Si sample to 
establish the full spectrum of nickel. In order to make the 
process more efficient, the theoretical values for the nickel 
peaks were calculated prior to taking data, and data was only 
taken in the ranges where peaks were expected to be seen. 
The nickel peak values were then compared to their 
theoretical counterparts using a lattice constant of 3.5238 Å 
(see [1]). The predicted values of 2𝜃 can be seen in Table 2. 
 

Nickel (𝑎 = 3.5238	Å, 𝜆 = 1.5418	Å) 
Index 𝜆√ℎ$ + 𝑘$ + 𝑙$

2𝑎  
2𝜃 (degrees) 

111 0.379 44.534 
200 0.438 51.894 
220 0.619 76.453 
311 0.726 93.034 
222 0.758 98.548 
400 0.875 122.108 
331 0.954 144.953 
420 0.978 156.121 

Table 2: Calculated expectations of 2𝜃 for nickel. 

Once the full x-ray spectrums for both copper and nickel 
were recorded, the lowest two index lines, (111) and (200), 
of each were then closely compared. Given that both 
elements have an FCC structure and similar lattice constant 
value, they should have similar peak values (within 1.5% of 
each other as seen above). A sweep from 40° to 55° at 

 
2 The Cu:Ni ratio for the alloys used were 0.82:0.18, 

0.53:0.47, and 0.26:0.74. The error in these given 
concentrations is assumed to be 2%. 

0.5°/min was performed to capture both peaks for each 
sample, as well as the silicon (220) peak to be used as a 
reference. The slower sweep was used to provide a more 
accurate measurement of the peak 2𝜃 values. From these 
measurements, the lattice constant can then be calculated 
using each peak value and Bragg’s Law. The values were 
then averaged and compared to the accepted values from [1]. 
 
Following this, we moved on to look at Cu-Ni alloys. We 
used three different alloy samples, each with a different 
concentration of copper and nickel2, each with a small 
portion of silicon on them for reference. Sweeping from 43° 
to 48° at 0.5°/min, data was recorded for the alloy (111) line 
and silicon (220) line for each sample. Using the silicon line 
to shift the spectrum accordingly, the lattice constant of the 
alloy can then be calculated using Vegard’s Law and the 
provided concentrations of copper and nickel. These lattice 
constants were then plotted as a function of copper 
concentration, fitted with a least square fit, and compared to 
the theoretical equation. Each sample was also held up to a 
horseshoe magnet to determine which of the alloys were 
magnetic, comparing with the expectations derived from the 
Cu-Ni Curie point. 
 
To expand on the examination of alloys, three different 
nickels were studied: a U.S. nickel, a 1979 Canadian nickel, 
and a 1984 Canadian nickel. This time, the copper and nickel 
concentrations were not known ahead of time and were to be 
determined. Each nickel sample had some silicon on it to use 
as a reference point. We used the same sweep on the nickels 
as in the previous step, from 43° to 48° at 0.5°/min to use the 
Cu-Ni alloy (111) peak in our analysis. After shifting the 
spectrum according to the location of the measured silicon 
(220) peak, the location of the alloy peak could be used in 
Bragg’s Law to find the lattice constant of the alloy. Then, 
Vegard’s Law was used to find the corresponding copper and 
nickel concentrations for each nickel. In addition, each 
nickel was tested for magnetism, and compared to theoretical 
predictions. 
 
Finally, we recorded the x-ray spectrum of an unknown 
element to try to uncover what the element was. The mass 
and volume were first measured in order to calculate its 
density to narrow down the list of possible elements. The 
unknown sample was then swept from 35° to 105° at 2°/min 
to find the 2𝜃 values of each peak. With no silicon 
component to create reference peaks from, the error from the 
original silicon measurements was incorporated to account 
for errors in the goniometer and reaction time. After finding 
the values of each peak, the peak theta values were plotted 
as a function of peak number. These were then compared to 



 

theoretical plots of various elements that had density values 
close to what was measured for this unknown sample. By 
comparing the observed peak theta values with the 
theoretical ones, we were able to narrow down what the 
unknown element was with high confidence. 

III. DATA ANALYSIS 
Part 2: Si Spectrum 

The x-ray spectrum for silicon, sweeping 2𝜃 at 2° per minute 
from 20° to 80° can be seen in Figure 4 below. A zoom in on 
each of the peaks, as well as a gaussian fit to each peak is 
also included and can be seen in Figure 5.  
 

 
Figure 4: XRD spectrum for Silicon sweeping 2𝜃 from 20° to 80° 

 
Figure 5: Zoom in of the Silicon XRD Peaks and their 2𝜃 values 

It can be seen in Figure 3 that five strong and sharp intensity 
peaks appear in the range 20° to 80°. Each of these peaks 
correspond to different index lines, and the exact 
measurements can be seen in Figure 5 from the gaussian fit. 
A comparison between our experimental results and 
theoretical expectations can be seen in Table 3 below. Each 
of the measured peak values falls on average about 

1.606°	outside of the expected value for 2𝜃. Fortunately, this 
is common for all of the peaks, and must be a result of error 
coming from goniometer misalignment, angle at which the 
beam hits the detector, and reaction time. This average 
difference could then be used for later scans when no silicon 
peaks are present. 
 

Silicon Spectrum Analysis 
Index (111) (220) (311) (400) (331) 

Normalized 
Intensity 

1.000 0.787 0.500 0.184 0.246 

 𝟐𝜽 (degrees) 
Experiment 30.045 48.985 57.774 70.804 78.040 

Theory 28.465 47.342 56.171 69.192 76.447 
Difference 1.580 1.643 1.603 1.612 1.593 
Average 

Difference 
1.606 

Std Dev 0.021 
Table 3: Comparison of experimental results and theoretical 

expectations for the XRD spectrum of silicon for 2𝜃 at 2° per minute 
from 20° to 80°	(angular measurements are in terms of 2𝜃) 

Part 3: Cu and Ni Spectrums 
The x-ray spectrum for a Cu-Si sample sweeping 2𝜃 at 2° 
per minute from 20° to 160°, along with the labeled index 
lines, can be seen in Figure 6 below. The individual peaks 
are labeled with their corresponding Miller indices, and a 
gaussian fit was done to determine the values of 2𝜃 as 
accurately as possible. 
 

 
Figure 6: XRD spectrum for Ci-Si sample sweeping 2𝜃 from 20° 

to 160° 

In this case, since there were three noticeable silicon peaks 
present, we decided to use the average deviation of these 
peaks from their theoretical values to shift the copper 2𝜃 
values by 1.499° with an error of 0.393°. Note that this is 
relatively close to the average deviation calculated in part 
one with the 5 silicon peaks, however the values are different 
enough to see that each individual measurement results in a 



 

different amount to be shifted by3. It can also be noted that 
there is an unlabeled peak around 40°, which is not in 
agreement with either the silicon or copper expectation 
values. We believe this extraneous peak could be due to the 
presence of oxidized copper, however it is unrelated to our 
study and does not impact the results. Table 4 shows the 
results of the 2𝜃 copper peaks in relation to the theoretical 
expectations. The first three values fall within error 
(mentioned above) of expectation, however all of the 
following values do not. It can be seen that they deviate more 
from the expectation as 2𝜃 get larger, potentially indicating 
a non-constant rotation speed of the goniometer, along with 
a splitting of the x-ray spectrum for the large values of 2𝜃. 
This splitting can actually be seen for the (420) and (331) 
lines in Figure 6.  

 
Index Theoretical 

𝟐𝜽 
(degrees) 

Measured 
𝟐𝜽 

(degrees) 

Difference 
(degrees) 

Normalized 
Intensity 

(111) 43.349 43.085 0.263 1.000 
(200) 50.487 50.224 0.263 0.498 
(220) 74.186 73.802 0.384 0.331 
(311) 90.017 89.531 0.486 0.316 
(222) 95.235 94.709 0.525 0.195 
(400) 117.064 116.412 0.651 0.169 
(331) 136.701 135.847 0.854 0.283 
(420) 144.958 144.082 0.876 0.283 
Table 4: Comparison of experimental results and theoretical 

expectations for the XRD spectrum of copper for 2𝜃 at 2° per 
minute from 20° to 160°	(angular measurements are in terms of 2𝜃) 

The x-ray diffraction spectrum for the Ni-Si sample, along 
with the labeled index lines, can be seen in Figure 7 below. 
In this case, only ranges surrounding the expected theoretical 
peak values were swept at a speed of 2° per minute. 
 

 
3 The discrepancy arises because the difference accounts 

for reaction time and alignment errors.  

 
Figure 7: Ni-Si Spectrum for predetermined 2𝜃 ranges at 2° per 

minute 

To index the nickel spectrum, the difference of the 
theoretical peak and the silicon peak in the first spectrum 
range was used (1.437° with an error of 0.021°). The error 
was taken from the average of the shifted silicon peaks from 
the first part, as the systematic error. We can assume each 
nickel peak is shifted by about the same amount because 
each range of data was taken in the same manner in the same 
period of time. As can be seen in the spectrums above, there 
are eight nickel peaks and one silicon peak located in 
between the first two nickel lines. A comparison of these 
peaks with their theoretical values is done in Table 5 below. 
All of the theoretical theta values fall within error or very 
close to the error of the measured values. Notice that the Ni 
(331) line looks like two lines due to the two source lines 
from the x-ray. Usually, the difference in wavelength of the 
emitted x-rays (0.15406 nm and 0.15444 nm) is small 
enough to ignore, though at large values of 2𝜃, we can see a 
splitting of the x-ray spectrum, such as what occurs at the Ni 
(331) line. This can also be seen in the Ni (420) line. To 
confirm that this was in fact the case, a comparison of each 
peak’s theta value and the theoretical values with the 
adjusted wavelengths was done and shown in the Appendix. 
However, for the purposes of the following table, the average 
theta value of the split peaks was used to compare against the 
theoretical values using the averaged wavelength. 
 
 



 

Index Theoretical 
𝟐𝜽 

(degrees) 

Measured 
𝟐𝜽 

(degrees) 

Difference 
(degrees) 

Normalized 
Intensity 

(111) 44.534 44.496 0.037 1.000 
(200) 51.894 51.831 0.063 0.568 
(220) 76.453 76.273 0.180 0.394 
(311) 93.034 92.770 0.264 0.400 
(222) 98.5483 98.277 0.271 0.261 
(400) 122.108 121.825 0.283 0.484 
(331) 144.953 145.008 0.054 0.285 
(420) 156.121 156.234 0.113 0.407 
Table 5: Comparison of experimental results and theoretical 

expectations for the XRD spectrum of nickel for 2𝜃 at 2° per minute 
(angular measurements are in terms of 2𝜃) 

Part 4: Lowest Index Lines of Cu and Ni 
The x-ray diffraction spectrum for the lowest two copper and 
nickel index lines can be seen in Figure 8 and Figure 9 
respectively. For this scan we used a Cu-Si sample and a Ni-
Si sample and scanned 2𝜃 at 0.5° per minute from 40° to 55°. 
This range allowed us to capture the two lowest index lines 
for the materials of interest as well as the (220) index line for 
silicon to use as a reference point. 
 

 
Figure 8: XRD spectrum for Ci-Si sample sweeping 2𝜃 at 0.5° 

per minute from 40° to 55°. Note that the spectrum has been shifted 
slightly to the left due to the silicon peak correction. 

 
Figure 9: XRD spectrum for Ni-Si sample sweeping 2𝜃 at 0.5° 

per minute from 40° to 55°. Note that the spectrum has been shifted 
slightly to the left due to the silicon peak correction. 

 
4 𝜎% =

0%
01
𝜎1 since 𝜃 is the only dependent variable 

Table 6 below shows the numerical results for each of the 
lowest index lines for both copper and nickel. The results 
have been adjusted based off of the deviation of the 
measured silicon (220) peak to the theoretical expectations. 
 

Copper and Nickel (111) and (200) Analysis 
Index (111) (200) 

Cu 
Measured 

43.345° 50.494° 

Cu Theory 43.349° 50.487° 
𝒂𝑪𝒖 (3.6156 ± .0040) Å (3.6150 ± .0033) Å 

𝒂𝑪𝒖 Cullity 3.6153 Å 
Ni Measured 44.490° 51.848° 

Ni Theory 44.533° 51.894° 
𝒂𝑵𝒊 (3.5271 ± .0038) Å (3.5267 ± .0032)  Å 

𝒂𝑵𝒊 Cullity 3.5238 Å 
Table 6: Comparison of experimental results and theoretical 

expectations for the XRD spectrum of Cu-Si and Ni-Si for 2𝜃 at 0.5° 
per minute from 40° to 55° (angular measurements are in terms of 
2𝜃) 

The error reported above was determined by doing error 
propagation4 of the uncertainty in 2𝜃 to get an uncertainty in 
the lattice constant: 
 

𝜎% = 	𝑎 ∗ cot(𝜃) ∗ 𝜎1 
 
Where 𝜃 and 𝜎1 are the measured angle and inherent error in 
the goniometer respectively. Note that 𝜃 is half of 2𝜃, which 
is what is measured in the experiment. Since the smallest 
increment on the goniometer is 0.1° (for 2𝜃), then the error 
in 2𝜃 from alignment would be 0.05°, adopting the standard 
practice. Therefore, we define 𝜎1 to be 0.025°, resulting in 
the errors determined above. As seen in Table 6, each of the 
calculated values falls within the expected lattice constants 
listed in [1].  
 

Part 5: Verification of Vegard’s Law 
Figure 10 below shows the experimental validation of 
Vegard’s Law, based off of 5 different Cu:Ni concentrations. 
Two of the samples were based off of the (111) results in Part 
4, using both a pure copper and pure nickel sample to better 
fit the data. For each of the three alloys, we scanned 2𝜃 at 
0.5° per minute from 48° to 43° to capture the (111) alloy 
peak, as well as the (220) silicon peak, the latter of which 
was used to shift the alloy peak. 
 



 

 
Figure 10: Plot of calculated lattice constants for the different 

alloys in relation to Vegard’s Law. 

The error in the lattice constant of each sample was 
determined by using 𝜎% defined in Part 4, again taking 𝜎1 to 
be 0.025°. The concentrations of each alloy were also taken 
to be within 2% of the given value, hence the error for only 
three of the data points. It can be seen that each of the 
calculated lattice constants for each alloy as well as the fit of 
the data fall well within the expectation of Vegard’s Law. 
Each of the samples were also tested to see if any were 
magnetic by placing them in the center of a horseshoe 
magnet.  
 

Ni 
Concentration 

Cu 
Concentration 

Magnetic? Predicted to 
be magnetic? 

0.18 ± .02 0.82 ± .02 no no 
0.47 ± .02 0.53 ± .02 yes no 
0.74 ± .02 0.26 ± .02 yes yes 
Table 7: Results for whether copper-nickel alloys are magnetic 

along with predictions. 

As predicted, the alloy with less than 30% copper 
concentration was magnetic. In addition, the alloy with 82% 
copper was nonmagnetic as predicted. However, the alloy 
with 53% copper was magnetic where it was predicted to be 
nonmagnetic. A possible reason for this could be due to the 
sample being mislabeled with the incorrect concentration, 
having less copper than reported.  

 
Part 6: Determination of Coin Concentrations 

To examine different nickel coins, a sweep of a U.S. nickel, 
a 1979 Canadian nickel, and a 1984 Canadian nickel were 
taken at 0.5° per minute from 43° to 48°. Since the coins 
were formed with nickel-copper alloys, the (111) line was 
expected to show up in this range somewhere between the 
(111) lines for nickel and copper. In addition, the silicon on 
each coin produced a Si (220) line that was used as a 
reference for systematic errors.  
 

Nickel 
Type 

Lattice 
Constant 

(Å) 

Ni 
Concentration 

(%) 

Expected Ni 
Concentration 

U.S. 3.5923 ± 
.0039 

25.95 ± 4.43 25% 

1979 
Canadian 

3.5228 ± 
.0038 

101.05 ± 4.11 100% 

1984 
Canadian 

3.5882 ± 
.0039 

30.53 ± 4.42 25% 

Table 8: Comparison of the compositions of different nickel coins 
along with their expected values. 

Once the spectrum was shifted according to the silicon peak, 
the angles at which the (111) line of the alloys were found. 
These values were then used in Bragg’s Law to solve for the 
lattice constant a. Then, the measured lattice constant was 
used in Vegard’s Law to find the copper and nickel 
concentrations of each coin. The US nickel has a nickel 
concentration of 25.95% that is consistent with expected 
results within given errors. The 1984 Canadian nickel’s 
nickel concentration is also relatively close to the expected 
value at 30.53%. The fact that this value falls slightly outside 
of error bounds is most likely due to the nickel sample, which 
was not flush against the silicon coating. Upon closer 
inspection of the x-ray diffraction spectrum, which is shown 
in the Appendix, one can see the silicon line did not produce 
as smooth a curve to determine where the silicon peak lies.  
 
The 1979 Canadian nickel produced a 101.05% nickel 
concentration, which is technically impossible. However, 
this impossible percentage arises from the alloy (111) line 
being located 0.013° to the right of the Ni (111) line, and 
therefore not between the Cu (111) and Ni (111) lines. This 
discrepancy could be credited to the loose nickel sample, 
where the silicon did not properly coat the nickel and the 
nickel could have shifted slightly while being rotated. Still, 
this 101.05% can reasonably be assumed to signify that the 
coin is completely composed of nickel, and is within error of 
the expected nickel concentration.   
 
In addition, each nickel followed expected magnetism rules. 
The U.S. nickel and the 1984 Canadian nickel, which both 
have 75% copper, are not magnetic as predicted. On the other 
hand, the 1979 Canadian nickel is magnetic with 0% copper, 
as predicted since it has less than 30% copper. 
 

Part 7: Unknown Sample 
Finally, the x-ray diffraction spectrum of an unknown 
sample was taken using a sweep of 2° per minute from 35° 
to 105°, as seen below in Figure 11. 
 



 

 
Figure 11: XRD spectrum for the unknown sample sweeping 2𝜃 

at 2° per minute from 35° to 135°. 

To determine what element the unknown sample was, the 
mass and volume were first measured to find its density. The 
density was found to be (10.32	 ±	 .02)	g/cm6, which was 
compared to known elemental density values found in [1], 
and found to be most similar to molybdenum and silver. The 
error in the density was calculated using error propagation: 
 

𝜎r = 	rS(
𝜎7
𝑀)$ + (

𝜎8
𝑉 )

$	 

 

where 𝜎8 = 	𝑉S(9!: )
$ + (9"

#
)$ + (9#

!
)$	 

 
Here, l, h, and w represent the dimensions of the sample that 
form the volume (𝑉 = 𝑙 ∗ ℎ ∗ 𝑤), M is the mass, and r is the 
density (along with their respective errors). 
 
The theoretical lines for these two elements were then 
calculated (shown in the Appendix), given that molybdenum 
has a BCC structure and silver has an FCC structure. The 
different structures will have different missing lines, so 
corresponding peaks will not represent the same index lines 
in each spectrum. The peak theta values of the unknown 
element were then plotted against peak number alongside the 
theoretical values of molybdenum and silver, as shown in 
Figure 12. 
 

 
Figure 12: Analysis of the unknown sample peak locations vs 

peak number, comparing it to Molybdenum and Silver 

From this plot, it can be easily seen that the unknown 
element is molybdenum, as the measured peak theta values 

correspond quite well to the theoretical values. In addition, 
each molybdenum theoretical value differs from the 
measured peak theta values by values between 0.55°-0.6°, so 
once the spectrum is shifted the peak values are within error 
bars calculated using the systematic error originally found in 
the silicon sample. 
 

IV. CONCLUSION 
From our experimental findings, we conclude that Bragg’s 
Law accurately describes the phenomena of x-ray diffraction 
in the powder method. Our data agrees very well with 
theoretical predictions, and we were able to identify our 
unknown sample with confidence. A possible source of 
further error from the experiment could have come from 
misalignment of the detector with respect to the x-ray beam. 
We can do our best to line up the beam with the florescent 
paddle, however since some of the samples were not 
perfectly flat, it is hard to tell whether or not the reflected 
beam was well aligned.  
 
This was most apparent in our data of the coins, where the 
Canadian coins were loose and the silicon coating did not 
overlap the coin. In order to further investigate this matter, a 
wider range of 2𝜃 could be swept so more of the x-ray 
diffraction peaks appear. This would provide a more 
comprehensive analysis and give a more accurate error. 
 
In addition, the error resulting from the difference in reaction 
time between starting data collection and starting the 
goniometer rotation could be lessened by the presence of two 
people. While circumstances made this impossible for our 
experiment, allowing two people to be present would not just 
lessen but also produce a consistent reaction time between 
the two actions. 
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VI. APPENDIX 
Raw data gathered from our experiment can be found in the 
figures below, as well as the confirmation that the split peaks 
were caused by different wavelengths of emitted x-rays. 



 

Split Peaks

 
Figure 13: Shifted XRD spectrum of Ni-Si sample sweeping 2𝜃 

at 2° per minute from 140° to 160°. The red lines represent the 
theoretical 2𝜃 values using a wavelength of 1.5406	Å, and the 
green lines represent the theoretical 2𝜃 values using a 
wavelength of 1.5444	Å. Based on how close each theoretical value 
is to the split peaks, it can safely be assumed that these multiple 
peaks are due to the difference in emitted x-ray wavelengths. 

 
Raw Coin Data 

 
Figure 14: Raw data of XRD spectrum of US nickel coin sample 

sweeping 2𝜃 at 0.5° per minute from 42° to 49°. 

 
Figure 15: Raw data of XRD spectrum of Canadian 1979 nickel 

coin sample sweeping 2𝜃 at 0.5° per minute from 42° to 49°. 

 

 

Figure 16: Raw data of XRD spectrum of Canadian 1984 nickel 
coin sample sweeping 2𝜃 at 0.5° per minute from 44° to 51°. 

 
Theoretical Peak Values 

 
Molybdenum (𝑎 = 3.1466	Å, 𝜆 = 1.5418	Å) 
Index 𝜆√ℎ$ + 𝑘$ + 𝑙$

2𝑎  
2𝜃 (degrees) 

110 0.346 40.544 
200 0.490 58.680 
211 0.600 73.756 
220 0.693 87.728 
310 0.775 101.563 
222 0.849 116.138 

Table 9: Calculated expectations of 2𝜃 for molybdenum with 
BCC structure. 

 
Silver (𝑎 = 4.086	Å, 𝜆 = 1.5418	Å) 

Index 𝜆√ℎ$ + 𝑘$ + 𝑙$

2𝑎  
2𝜃 (degrees) 

111 0.327 38.151 
200 0.377 44.342 
220 0.534 64.510 
311 0.626 77.482 
222 0.654 81.632 
400 0.755 98.007 
331 0.822 110.665 
420 0.844 115.095 

Table 10: Calculated expectations of 2𝜃 for silver with FCC 
structure. 


