Black and White Image Recoloration with a Convolutional Neural
Network

Ilana Zane and William Bidle

December 18, 2021

1 Introduction

Image recoloration and restoration from black
and white photos is an arduous process requiring
artistic skill, understanding of color composition,
and Photoshop experience. However, there are now
several ways to utilize the power of machine learn-
ing to recolor images in a fraction of the time. Pop-
ular methods of recoloring involve using generative
adversarial networks (GAN) or convolutional neu-
ral networks (CNN). In this paper, we attempt to
create our own version of a CNN to recolor black
and white images, and explore how well the net-
work performs when it is provided with images
that are missing information. In the following sec-
tions we explain our approach and results from the
project.

2 Approach

Although a GAN is more powerful, as they are
typically the result of two CNNs, single CNNs are
still capable of effectively recoloring images based
on their ability to extract different features in dif-
ferent layers of the network. In short, a CNN first
extracts low level features such as curves and edges,
and then it continues to extract patterns and higher
level details. Once the CNN has these different lay-
ers of varying detail, it is able to combine these
layers to create a full image.

2.1 Model

We based our model off of [2] to serve as a start-
ing point, and made several modifications to cre-
ate a model that better suited the project. Train-
ing and data generation parameters were edited so
the model could run on my laptop and through
Google Colab. Before training, the images are pre-
processed by converting them from RGB to the Lab
color space, since Lab is a more accurate color space

to describe the human perception of color. The
L channel of the image, which describes lightness
through gray-scale, is isolated and used as input
for the model. The model consists of 12 convolu-
tional layers, created through the Tensorflow plat-
form and Keras library, that take images of size 256
x 256. In order to extract features, the model has a
kernel size of 3x3 and a stride of 2. This means that
images are analyzed by a 3x3 window to see only
nine pixels at a time and the stride parameter dic-
tates that the window moves by 2 pixels each time.
This essentially leaves us with an image that is half
the width and height of the original. Towards the
end of the process, the network upsamples the im-
age in order to increase the dimensions of the image
to what it originally was.

2.2 Training and Testing Datasets

The training data-set consists of 10 256 x 256
colored images of faces that were converted from
RBG to Lab. Since this is a relatively small num-
ber of images for what is usually needed to properly
train a model, a data generator was used to make
50 unique copies of each original training image by
rotating, flipping, and zooming in on them. A main
reason for doing this instead of just using thou-
sands of raw images is to both save time training
the model as well as efficiently use computational
resources. Since we are running this network di-
rectly on a Mac Book laptop, there is only so much
computational power available for us to use. The
model never sees the original training data and uses
this generated data. The testing data-set consisted
of 15 images of faces from the CelebA-HQ data
set [1] found on Kaggle.

2.3 Training the Model

In terms of training the model, there were a va-
riety of parameters to consider. Since the number



Ground Truth

Black and White

Recolored

-
%)

Figure 1: A set of ground truth images (top row) that have been converted to black and white (middle row),

and then recolored by the network (bottom row).

of images being used was relatively small (even af-
ter the data generation), it was important to then
run a large number of steps per epoch in order for
the model to see enough of the training data. We
experimented with several different parameters and
finally settled on 1,000 steps per epoch with 1 epoch
in order to achieve decent enough results, while
keeping the run-time at a reasonable length (~1
hr of training). With only a few steps per epoch,
we found that the recolored images were predom-
inantly one color (green, red, blue, purple), so it
seemed as though this needed to be kept relatively
high in order to have the model recolor the images
closely to their original ones.

3 Results

3.1 Recoloration Performance

The results of the model can be seen in Fig. 1,
where six black and white faces have been recol-
ored. The first and second rows show the ground
truth and black and white image, respectively,
while the third row shows the recolored image.
Faces were chosen as the testing since the model
was trained exclusively on faces, although in prin-
ciple any 256 x 256 black and white image could be
used.

From these results one of the first things that
can be noticed is that the recolored images are
much less vibrant than the originals. The model
seems to be biased towards the color blue, as there
are extra traces of the color in almost all of the
images where it doesn’t belong. In addition, the
model seems to struggle with recoloring people with
blonde hair as seen by the first column, and also has
trouble picking up bright red colors, which is par-
ticularly noticeable in the fifth column. In general,
however, the model was able to capture skin tones
fairly well and able to match most of the original
image.

Part of the reason for this may have to do with
the fact that the training set consisted of mostly
white women with darker hair. The images in the
training set were portraits that included the sub-
jects’ bodies in various poses, with a lot of different
background colors. The range of colors might con-
tribute to the overall gray/brown tint that most of
the test images have.

While it was not explicitly tested, it would be
interesting to see how well the model performs on
images that contain things other than faces.



3.2 Loss of Information

Once the model was trained and able to ade-
quately recolor black and white images, we decided
to extend the project to see how well the model can
recolor an image with missing information.

Different percentages of random pixels were re-
moved from the black and white images and then
recolored. Figure 2 shows the results of recolor-
ing an image that is missing 1%, 5%, 10%, 25%,
50% and 75% of pixels selected at random. The
pixels removed from the image were replaced with
gray pixels i.e had a pixel value of 0.5 on a scale
of 0-1. Replacing missing information with gray
pixels replaced lead to results that were more mod-
erate compared to replacing the pixels with white
(0.0) or black (1.0) pixels. Using white pixels cre-
ated images that became increasingly more yellow
and black pixels rendered the last image (75%) al-
most completely black. When the image is recol-
ored with gray pixels, the outline of the original
image can be clearly seen, and a majority of the
color (brown hair) is recolored correctly.

Figure 2: A (a) ground truth, (b) black and white,
and (c) recolored image, as well as versions that
were recolored by the model after having 1% (d),
5% (e), 10% (f), 25% (g), 50% (h), and 75% (i) of
the black and white version removed.

For two images z, the original image and y, the
recolored image with missing information, with N
pixels each, the overall performance of the model
was based off of the average distances between to
two corresponding pixel values of the original im-
age and the recolored one. That is, the score of the

model was computed as

| X
score = N Z dist; (1)
=0

where dist; is the distance between pixel values
across the two images. Since rgb pixel values can
range anywhere from 0 to 1, recolored images that
return average scores closer to 0 when compared to
the original image means that the model did a good
job recoloring. Eq. 1 can then be used to look at
the overall performance of the model as a function
of percent lost, as seen in Fig. 3.

It can been see from Fig. 3 that percent loss
gradually increases as average pixel difference in-
creases. This makes sense because when the there
is less missing information we expect the average
pixel difference to be much lower. Otherwise, an
image with most of its information missing will be
recolored less accurately with our current model.

Average Pixel Difference

0 ) 2 0 @ & 0 &0 @

50
Percent Loss

Figure 3: Performance of the model as a function
of the percent of pixels removed from the original
black and white image.

3.3 Random Noise

One of the issues with the methodology of the
previous section was that every pixel that was
grayed out was treated the same. In real life sce-
narios, images may contain random forms of noise
that are non-uniform. One can imagine that during
some scanning process or digitization of a physical
black and white image, some random noise is intro-
duced, with some pixels having lighter values and
others having darker when compared to what they
should actually be. So instead of completely remov-
ing information from an image, it may be more ben-
eficial and instructive to introduce a sort-of noise
into the images, randomly tampered with the pixel
values in a non-uniform way. As we will see, this



methodology turns out to improve the performance
of the model in certain situations. An example of
this technique can be seen in Figure 4, where 1%,
5%, 10%, 25%, 50% and 75% of the pixels were ran-
domly selected and tampered with by adding some
noise. Since the pixel values lie within a range of 0-
1, random float values within this range were added
to the selected pixels in order to simulate noise.

Figure 4: A (a) ground truth, (b) black and white,
and (c) recolored image, as well as versions that
were recolored by the model after having 1% (d),
5% (e), 10% (f), 25% (g), 50% (h), and 75% (i) of
the black and white version tampered with.

Similar to the previous section, an analysis of
the average score of the model as a function of per-
cent loss can be done. As expected in the pre-
vious situation, the average score/pixel difference
increases as the percent of information tampered
with increases, however, this time there were a few
images where introducing some noise actually im-
proved the performance of the model. This be-
havior can be seen in Figure 5, which shows the
performance of the image in Figure 4.

Average Pixel Difference
2
3
2

0 10 20 30 40 50 &0 0 80 80
Percent Loss

Figure 5: Performance of the model as a function of
the percent of pixels tampered with from the orig-
inal black and white image.

What is interesting to note is that for this im-
age, it seems as though it is beneficial to add some
random noise to the black and white image before
recoloring to get an overall higher final score. Af-
ter looking at the recolored images given in Figure
4, it does look like some of the more noisy images
retain some of the colors better than the less noisy
ones. For example, Figure 4c at 0% noise seems
to have some unnecessary blue shades appearing
at the edges of the woman’s hair, yet the higher
percentage ones seen in Figure 4(g-i) seem to lack
this.

4 Conclusion

Although the model works, it can be improved
in several ways. In hindsight, we would have made
the training set have images from the CelebA-HQ
data set. The training data that we used is dif-
ferent enough from the testing data that it might
have affected the performance of the model. We
would also make sure that the training set consists
of faces that have various skin tones because cur-
rently, the training set is bias by containing only
images of white women. We can see from the re-
sults that although the model is able to gauge the
lightness/darkness of skin tone, the recoloring of
the last image is not as clear as the first few recol-
orations. Although the model may perform better
with images that are of uniform color, it is impor-
tant to make sure that the model is improved to
work well with a diverse data set to prevent any
bias.

In terms of calculating the score for the mod-
els performance, there might be a better way to do
it. Currently, we compare total average pixel value
between the original image and recolored image. A



low average value is indicative of the fact that the
model did recolor an image well, however this may
not be true. If, for example, an original image has
very vibrant colors and the recolored image is po-
tentially recolored very well, but with more muted
colors, then the score might be low. This would not
be an accurate representation of how the model is
performing. To remedy this, we could instead cal-
culate the average pixel difference when the final
image is in the Lab color space, instead of RGB as
it is now. By doing this, images that are of similar
color but at a different level of brightness will not
be rewarded with a low score.

In addition, some shortcuts were taken during
the training process due to a lack of computing
power and proper resources. We used Google Co-

lab to train the model, but it was for 2 hours at
most before the sessions were terminated. We saved
the weights for the first model that produced a re-
coloration that was not skewed to one of the a/b
channels. If we could, we would properly train the
model with more data and for a longer period of
time in order to produce the best possible results.

References

[1] Moses Odhiambo. Celeba-hq resized (256x256),
2021.

[2] Emil Wallner. How to colorize black white pho-
tos with just 100 lines of neural network code,
2017.



