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This paper provides an overview of the application of quantum state tomography for
quantum states of light. It summarizes some of the essential concepts and applications
regarding quantum state reconstruction through the experimental method of optical
homodyne tomography. The technique of maximum likelihood estimation of a quantum
state’s density matrix is discussed, and several examples are explored.
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I. INTRODUCTION

The main purpose of this document is to answer the
questions of “how do we experimentally measure the
quantum state of light,” as well as “how do we then in-
terpret it?” It should serve as a helpful guide for those
who are interested in the field of quantum information
science to be able to conceptually understand the under-
lying quantum theory, as well as replicate the process
experimentally.

Many applications of quantum information applied to
optical systems rely on the polarization state of light to
encode information. While this serves a very practical
purpose [15, 12], it turns out to be difficult to retrieve
that information as we go down to the single photon
level, an essential tool needed for the field of quantum
information science. A superconducting nanowire single-
photon detector (SNSPD) does the trick for single photon
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detection, however in many real world cases, we are deal-
ing with several photon states,1 and an SNSPD tells us
nothing about the information that was encoded. Addi-
tionally, any important information that may have been
encoded in the phase of the photon would be lost, since
again, SNSPD’s can only tell you that a photon is there.
The basic idea behind Quantum State Tomography

(QST) is that for a set of measured statistical values of
an identically prepared quantum state, we are able de-
duce a best possible guess for what that quantum state
is. The idea is not too dissimilar from a CT scan of the
brain, where several different 2D snapshots of the brain
are layered together in order to create an accurate 3D
rendering of what is actually going on, as seen in Fig. 1.

FIG. 1 CT scan of the human brain. Several different 2D
snapshots are taken at different heights to put together a full
3D picture. [Image Source]

1 As of the writing of this document, there is no such thing as a true
single photon source. As a cheap (but no so great) alternative,
many fall back on using weakly attenuated coherent states to
simulate a single photon source. For some insight into more
research being done on single photon sources, see [4] and [5].

mailto:william.bidle@stonybrook.edu
https://en.wikipedia.org/wiki/Computed_tomography_of_the_head
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This will obviously be much more difficult in the quan-
tum world, as we will be dealing with quantum phase-
space as opposed to a physical 3D space, but the idea is
still the same. In the next section, we will start to lay
down some of the necessary theoretical background be-
fore diving into the weeds of developing an algorithm to
determine the most likely quantum state for a given set
of “projections.”

II. THEORETICAL BACKGROUND

A. Second Quantization

Before we can even start to discuss measuring single
level photon states with a detector, we must first dis-
cuss what photons are, and how we can measure them in
a continuous space (i.e., their electric field amplitudes).
Since a photo detector essentially makes measurements of
a light source’s electric field, our goal here is to determine
a quantum operator that represents the electric field of a
photon. In the absence of any sources,2 Maxwell’s equa-
tions yield a vector potential given by an expansion of
plane waves:3

A(r, t) =
∑
α,k

ϵα,k(Aα,ke
i(k·r−ωt) +A∗

α,ke
−i(k·r−ωt)) (1)

where the sum is over the different polarizations, α, as
well as the different electric field modes, k. If we restrict
ourselves to a box of volume V = L3, the total energy of
the radiation field is given by integrating the Hamiltonian
density over V with periodic boundary conditions:

H =
∑
α,k

ϵ0V ω
2
k[A

∗
α,kAα,k +A∗

α,kAα,k] (2)

It is here where we can notice a striking similarity to
that of the Hamiltonian of a harmonic oscillator:

ĤHO =
1

2

∑
k

ℏω(âkâ†k + â†kâk) (3)

where â†k and â†k are the bosonic creation and annihi-
lation operators, respectively, such that:

|n1, n2, n3, . . . , nk⟩ =
∏
k

(â†k)
nk

√
nk!

|0⟩ (4a)

2 Otherwise known as the Coulomb gauge, with ∇ ·A = 0
3 I will be working in SI units throughout the rest of this document

and

[â†i , â
†
j ] = δij (4b)

with the |nk⟩ states representing the so-called “number
states,” also known as Fock States that satisfy the time-
independant Schrödinger equation, ĤHO|n⟩ = En|n⟩,
with energy eigenvalues En given by:

En = ℏω(n+
1

2
) (5)

Given the similarities between Eqs. (2) and (3), we are
led to make the substitutions:

Ak →
√

ℏ
ωϵ0V

âk (6a)

and

A∗
k →

√
ℏ

ωϵ0V
â†k (6b)

into Eq. (2), which leads us to the general electromag-
netic field Hamiltonian:

ĤEM =
∑
α,k

ℏωk(â
†
kâk +

1

2
) (7)

This is a good point to stop and reflect upon our result,
as we have come to a pretty remarkable conclusion: the
electric and magnetic field components of a photon can be
viewed similarly to that of the position and momentum of
quantum harmonic oscillator. Thus, in a similar fashion
to the harmonic oscillator we introduce a pair of opera-
tors, Ê and B̂, called the quadratures, which in this case
represent the real and complex vibrational amplitudes
of the electromagnetic oscillator, respectively [9].4 The
quadrature eigenstates, denoted |E⟩ and |B⟩, satisfy the
eigenvalue equations Ê|E⟩ = E|E⟩ and B̂|B⟩ = B|B⟩, re-
spectively. In terms of the familiar raising and lowering
operators, the quadratures are given by:

Ê = 2−1/2(Â† − Â) (8a)

and

B̂ = i2−1/2(Â† + Â) (8b)

4 The typical notation that is used in the literature is q̂ and p̂, but
I think this can confuse the reader into thinking we are dealing
with non-photonic systems, such as the harmonic oscillator de-
scribed in the text. If you ever get confused, just remember that
q̂ ↔ B̂ and p̂↔ Ê. Regardless, it is important to know that the
quadratures represent the electric and magnetic field amplitudes
of the photon.
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While the quadrature states themselves are not very
useful, they play an important role in helping to define
the so-called quadrature wavefunctions ψn(E) = ⟨n|E⟩
and ψn(B) = ⟨n|B⟩, which turn out to be very useful:

ψn(E) = ⟨n|E⟩ =
(
1

π

)1/4
Hn(E)√
2nn!

e−
E2

2 (9a)

and

ψn(B) = ⟨n|B⟩ =
(
1

π

)1/4
Hn(B)√
2nn!

e−
B2

2 (9b)

where Hn denotes the nth Hermite polynomial. The
states given in Eq. (9a) and (9b) represent projections
of a Fock state onto the continuous basis of the photon’s
electric and magnetic fields, respectively. This becomes
extremely useful when we actually look to measure quan-
tum states of light in the lab (see Sec. II.B). Again, it is
important to realize the major distinction between Eqs.
(9a) and (9b) in the case of a harmonic oscillator and in
the case of a photon - in the former’s case, we are dealing
with the oscillator’s position and momentum, whereas in
the latter’s case we are looking at the photon’s electric
and magnetic fields amplitudes. Examples of some of the
states described by in Eq. (9a)/(9b) as well as the cor-
responding probability distributions5 can be seen in Fig.
(2a) and (2b), respectively.

0(x)
1(x)
2(x)
3(x)
4(x)

| 0(x)|2
| 1(x)|2
| 2(x)|2
| 3(x)|2
| 4(x)|2

(a) (b)

FIG. 2 Examples of (a) the lowest five Fock state wavefunc-
tions, given by Eq. (9a), as well as (b) their corresponding
probability distributions.

B. Measuring Quantum States with a Photodetector

Now what about real world measurements? When we
go to measure a single photon source, for example, how do

5 |ψ|2

we know we are looking at single photons and not more?
How confident can we be that the state we are observing
is not something else (see Sec. II.C for an illustrative
example)? Before tackling these questions, we should
remind ourselves of how optical states are measured in
the lab with photodetectors. Since the output voltage of
a photodetector measures the intensity of the incoming
light field, this ultimately means that we are making a
measurement of the electric field of the light source:

Vdet ∝ I =
cnϵ0
2

|E|2 (10)

where c is the speed of light, n is the refractive in-
dex, and ϵ0 is the permittivity of space. We already
figured out what the non-classical electric field distri-
butions should look like for quantum states, as per Eq.
(9a), but what will this look like on our photodetector?
As we know, quantum states are probabilistic in nature
[6], which therefore requires us to make many measure-
ments of identically prepared systems to build up the
full picture of our quantum state in question. Much like
when determining the probabilities of classical events,
such as whether or not a coin is “weighted,” it is never
enough to just measure once.6 Therefore by sampling
the same quantum system many times under identical
circumstances, we can recover probability distributions
similar to those shown in Fig. (3).

FIG. 3 Examples of the theoretical statistical measurements
of the quantum states (a) |0⟩, (b) |1⟩, and (c) |2⟩ as measured
by a photo detector.

6 Or even a few times, for that matter.
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C. Quantum Phase Space and the Wigner Distribution

Now in principle, one might think that Eq. (9a) is all
that is needed to be able to extract information about a
quantum state. As shown in the drawings to the right of
each statistical dataset in Fig. (3), we can hypothetically
recover the exact quantum state in question by fitting Eq.
(9a) to the statistical data (an example of doing this with
experimental data can be seen in Section III).

There are two problems with this approach, however.
The first is that we are almost never dealing with pure
states in the real world7. Since there are no reliable single
photon sources as of yet, any quantum state produced
in the lab will be some linear combination of different
Fock states. Each of these states will therefore have it’s
own complex component of electric and magnetic field,
contributing to the overall wavefunctions in Eq. (9a).
This actually turns out to be the least of our problems,
as modern day computers can generally handle complex
fitting problems pretty well.8

The second, more problematic issue is that, in prin-
ciple, two quantum states could look identical when
measured by a photodetector. As an illustrative exam-
ple, consider the two states |ψ1⟩ = 1√

2
(|0⟩ + i|1⟩) and

|ψ2⟩ = 1√
2
(|0⟩ − i|1⟩) whose statistical distributions are

given by Figs. (4a) and (4b), respectively. If we tried
to just fit these two states to the functions given in
Eq. (9a), we would not be able to recover the complex
phase element that sets the two states apart from one
another. The two states are completely indistinguish-
able, and valuable information stored in the phase of the
quantum state is lost!

In order to solve this problem, we need to change our
perspective in quantum phase space. The idea is actually
inspired from the medical practice of a CT scan. By
taking many different 2D projections of the complex 3D
brain, we can accurately determine the brain’s shape and
structure with accuracy. A visual example of this can be
seen in Fig. 5 for a complex 3D shape. The only way to
properly determine the shape with absolute certainty is
to look at every 2D projection from all angles.

Due to our need to probe the quantum state in phase-
space, it would be convenient to work within some sort of
phase-space framework. It is here where we can introduce
the all important Wigner function [14, 9]:

W (x, p) =
1

πℏ

∫ ∞

−∞
⟨x− y|ρ̂|x+ y⟩e−2ipy/ℏ dy (11)

7 The exception to this is the vacuum state, |0⟩, however this ob-
viously has no real interest in quantum information processing
on it’s own.

8 That is, assuming the state space under consideration is small
and finite.

3

2

1

0

1

2

3 (a)

0 2000 4000 6000 8000 10000
Samples

3

2

1

0

1

2

3 (b)

El
ec

tri
c 

Fie
ld

 A
m

pl
itu

de
 (a

rb
.)

FIG. 4 Simulated detector measurements of (a) |ψ1⟩ =
1√
2
(|0⟩+ i|1⟩) and (b) |ψ2⟩ = 1√

2
(|0⟩− i|1⟩) according to Eqs.

(9a) and (10) over 10,000 sample statistical measurements.
Notice how the two are practically indistinguishable despite
being different quantum states. In this case, the relative in-
formation stored in the phase of the “qubits” is lost.

FIG. 5 Different 2D projections of a complex 3D shape. In
order to properly determine the actual 3D shape, many differ-
ent 2D projections need to be analyzed from many different
angles. [Image Source]

where ρ̂ =
∑

m

∑
n ρmn|m⟩⟨n| is the quantum state’s

density matrix in the Fock basis. The idea is to map the
density operator of the quantum state to a phase-space.
Some examples of Wigner Distributions can be seen in
Fig. (6). Notice how the function goes negative for some
of the states, as is allowed by Eq. (11), and is therefore
referred to as a quasi-probability distribution.

One of the most important features of the Wigner dis-
tribution is that it will always be unique for a given quan-
tum state [9]. That is, no two unique quantum states will
produce the same Wigner function. This has huge impli-
cations for being able to distinguish different quantum
states, and may potentially save us from our problem-
atic example as given by Fig. (3). Let’s now look at

https://www.pdqdecide.com/post/right-solution-right-problem
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FIG. 6 Example Wigner distributions, W(E,B) in the E and B phase space of photons for the states (a) |0⟩, (b) |1⟩, and (c)
|2⟩. Notice how the Wigner distribution for the |1⟩, and |2⟩ states goes negative for certain values of E and B, while the |0⟩
state is strictly positive - in fact, it is just a simple Gaussian.

what these states look like in phase-space, as seen in Fig.
(7). Several different angles are provided to illustrate the
similarities and differences in the two states depending on
how they are viewed.

FIG. 7 Different angles of the Wigner distribution for the
states (a-c) |ψ1⟩ = 1√

2
(|0⟩ + i|1⟩) and (d-f) |ψ2⟩ = 1√

2
(|0⟩ −

i|1⟩). Notice how the two states look identical when projected
along the electric field axis, but their differences are revealed
when we look at the different projections along the magnetic
field axis. This then suggests that we need to find a way to
view the quantum state from different angles in phase-space.

From a top view, as in Figs. (7a) and (7d), it is clear
that the Wigner distribution of the two states are differ-
ent. However, as we have already seen, if the two states
are looked at purely along the electric field axis, as in
Figs. (7b) and (7e), they appear to be identical. If we

change our perspective by 90 degrees to look along the
magnetic field axis, the differences of the two states are
revealed. This then suggests that if we were to some-
how rotate ourselves or the quantum state in phase-space,
we would be able to reveal their differences. If we were
able to accomplish this, then in essence, we could fit the
Wigner distribution of the quantum state in question to
completely characterize it’s properties, and the problem
presented in Fig. (4) would vanish. So the question
then is: “how we can change our perspective in quan-
tum phase-space to make these differences more appar-
ent, while still performing measurements on a photode-
tector (i.e., still looking at the electric field projection)?”
The answer lies in interferometry.9 By interfering the

same signal with itself after one of the arms has had it’s
path length changed, we can simulate the effect of ro-
tating the quantum state in phase space. In effect, this
allows us to see into different projections of the quantum
state while still only looking along it’s electric field pro-
jection. The greater the phase difference between the two
arms, the more in phase-space we will rotate.10 Exper-
imentally, we can accomplish this effect with an optical
homodyne detector, which will be explored more in Sec.
III.
Mathematically, if we introduce the phase shift opera-

tor given by:

Û(θ) = eiθn̂ (12)

and apply this to a random Fock state |ψ⟩ = |n⟩, we
find that:

Û(θ)|ψ⟩ = eiθn̂|n⟩ = einθ|n⟩ (13)

9 In fact, almost any situation involving phase will point to inter-
ferometry.

10 That is up until θ = 2π.
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where I have used the tricks that eiθn̂ =
∑∞

k=0
(iθn̂)k

k!
and n̂|n⟩ = n|n⟩. It is here where we can now find the
modified versions of Eqs. (9a) and (9b) with the addition
of the phase term from Eq. (13):

ψn(θ,E) = ⟨n|θ,E⟩ = einθ
(
1

π

)1/4
Hn(E)√
2nn!

e−
E2

2 (14a)

and

ψn(θ,B) = ⟨n|θ,B⟩ = einθ
(
1

π

)1/4
Hn(B)√
2nn!

e−
B2

2 (14b)

One thing we can immediately notice is that the new
phase term in Eqs. (14a) and (14b) will only affect the
anti-diagonal terms of a quantum state, providing us with
a way to probe the different components of the state. If
we now look at the statistical distribution of the two
problematic states considered in Fig. 4, but now using
Eq. (14a) to generate the statistics as a function of the
phase, θ, we can easily distinguish the two, as seen in
Fig. 8.
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FIG. 8 Statistical measurements of (a) |ψ1⟩ = 1√
2
(|0⟩+ i|1⟩)

and (b) |ψ2⟩ = 1√
2
(|0⟩ − i|1⟩) according to Eq. (14a). Notice

how now the two states can be easily distinguished.

Since we are able to look at the two states from many
different angles, their differences suddenly become appar-
ent, and we can now recover information that was once
lost. A visual example of this process can be seen in Fig.
(8), which shows the evolution of the state in Fig. (7) in
phase-space. As the state is rotated in phase-space, the
electric field projection changes and allows us to probe
the full picture of the quantum state.
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FIG. 9 Evolution of the quantum state from Fig. 7(a) in the
phase-space described by Eq. 11 for phase values of (a) 0, (b)
π
2
, (c) π, and (d) 3π

2
. The white horizontal dotted line in each

image is an example of the state’s projection as viewed from
the E-field axis.

D. Coherent States

One of the more important optical quantum states that
shows up in almost every experimental setting is the co-
herent state |α|, which accurately describes the behav-
ior of in-phase laser light. A coherent state satisfies the
eigenvalue equation â|α⟩ = α|α⟩. The raising operator is
not Hermitian, therefore α is not always real, and can be
written in a complex form as α = |α|eiθ, where |α| is the
coherent state amplitude, and θ is the phase. This form
is convenient for representing the state in phase space. In
the Fock state representation, a coherent state is given
by:

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩ (15)

An example of the quadrature statistics as a function
of phase can be seen in Fig. 9 for α =

√
10.

III. HOMODYNE TOMOGRAPHY

I will now focus on some details of how to implement
the ideas in the previous section into real world practice.
As mentioned, in order to accomplish the phase-space
probing of our quantum states that we desire, we need
to turn to interferometry. More specifically, we need to
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FIG. 10 Example of the quadrature statistics of a coherent
state with α =

√
10.

use a homodyne detector, which is an extremely useful
device for measuring the phase-sensitive properties of a
light field [3, 9].

When applied to quantum optics, a homodyne detec-
tor will directly measure phase dependent quadrature
values of a quantum state’s electric field. The basic
schematic for performing homodyne detection of a quan-
tum state can be seen in Fig (11). Two input fields,
denoted the local oscillator (LO) and probe are incident
on a 50/50 beam splitter (BS) and the two outputs are
passed through a balanced photo detector.

FIG. 11 Schematic for a basic optical homodyne detector.
Two input fields, denoted the local oscillator and probe are
incident on a 50/50 beam splitter and the two outputs are
passed through a balanced photo detector.

Since a photodetector will make a measurement pro-

portional to the intensity of the light field, as given by
Eq. (10), we can write the output voltage of the balanced
photodetector as;

Vhomo = (ÊProbe + ÊLO)
2 − (ÊProbe − ÊLO)

2 (16)

An example of measuring a vacuum state with a ho-
modyne detector can be seen in Fig. (12).11. Quadrature
statistics of the state’s electric field were measured as the
LO phase was scanned and the probe output was blocked.
The measured quadratures were then binned into his-
tograms and fit to the vacuum wavefunction, ψ0(E), as
given in Eq. 9a to determine the so-called “vacuum
width” that is necessary for re-scaling any subsequent
data.

IV. MAXIMUM LIKELIHOOD RECONSTRUCTION

Since any quantum state can be written as a superposi-
tion of Fock states, we can therefore write the wavefunc-
tion as a linear combination of states given in Eq. (14a)
and (14b) for any photon number. If we were to know
the quantum state in advance, we would therefore be able
to easily predict the quadrature statistics that the state
would produce on a photodetector. Examples of this were
shown in Sec. II.C for the states |ψ1⟩ = 1√

2
(|0⟩ + i|1⟩)

and |ψ2⟩ = 1√
2
(|0⟩ − i|1⟩), which can both be written

in quadrature space as ⟨ψ1|θ,E⟩ = ( 2π )
1/4 1√

2
e−E2

(1 +

ieiθ
√
2E) and ⟨ψ2|θ,E⟩ = ( 2π )

1/4 1√
2
e−E2

(1 − ieiθ
√
2E),

respectively. From here, probabilistic sampling can be
done as a function of the phase, θ, which again, was ex-
plained in Sec. II.C.
In reality, however, we won’t know in advance what

our quantum state is, and we are therefore tasked with
the reverse problem - given a set of experimental quadra-
ture data, we need to determine what the corresponding
quantum state is. This is obviously a much more diffi-
cult problem and may not be as easy as a simple fitting
exercise, especially when the possible state space under
consideration can be infinite.
There are two main reconstruction methods that are

typically used to reconstruct a quantum state through
OHT. The first is a so-called “inverse linear transform”
technique, which relies on the fact that Eq. (11) can be
inverted due to the linear properties of integrals [11]. A
more common approach relies of statistical inference, and
more specifically, maximum likelihood estimation (MLE)
of the density matrix for the measured quantum state
[11]. The latter of these two will be discussed here.

11 This data was taken with a in-house built homodyne detector in
the Figueroa Lab at Stony Brook University.

http://qit.physics.sunysb.edu/wordpress/
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FIG. 12 (a) Real data of the vacuum state from a homodyne detector along with (b) a fit of the binned statistics in order to
accurately determine the state, as outlined in Sec. II.

A. Derivation of the MLE Algorithm

The basic approach to MLE [8] is that we are hoping
to find a density matrix that has the highest probability
of representing the statistics of some measured quantum
state. In other words, we are looking to maximize the
likelihood that a given density matrix describes the mea-
sured quadrature data given by:

L(ρ̂) =
N∏
i=1

pr(θi, Ei) (17a)

or

ln[L(ρ̂)] =
N∑
i=1

ln[pr(θi, Ei)] (17b)

where pr(θi, Ei) = ⟨θi, Ei|ρ̂|θi, Ei⟩ = Tr[Π̂(θi, Ei)ρ̂]
is the probability of measuring a particular quadrature
value with Π̂(θi, Ei) = |θi, Ei⟩⟨θi, Ei| being the projec-
tion operator in the continuous quadrature space. That
is, we are looking to find a density matrix that best repre-
sents the entire dataset, {(θi, Ei)}. The logarithm of the
likelihood (log-likelihood) is usually considered to make
the proceeding approach a little more mathematically
friendly. We therefore want to find a ρ̂ that maximizes
Eq. (17b) under the constraint that it’s trace is equal to
unity. This essentially boils down to optimizing a con-
strained function, F (ρ̂), which can be done through the
method of Lagrange multipliers:

F (ρ̂) = ln[L(ρ̂)] + λΦ(ρ̂) (18)

where Φ(ρ̂) = Tr[ρ̂] = 1 is the constraint and λ is
the Lagrange multiplier. Our goal is to first find what
λ is. We can start by realizing that when we are at a
maximum, Eq. (18) will be zero:

dF

dρ̂
=
dln[L(ρ̂)]

dρ̂
+ λ

dΦ

dρ̂
=

d

dρ̂
[ln[L(ρ̂)] + λTr[ρ̂]] = 0

(19)

In other words, making small changes to the density
matrix will not change the constrained function. Substi-
tuting in the definition of ln[L(ρ̂)] from Eq. (17b):

N∑
i=1

1

pr(θi, xi)

d

dρ̂
(Tr[Π̂(θi, xi)ρ̂]) = −λ d

dρ̂
(Tr[ρ̂]) (20)

If we now utilize the fact that d
dB̂

Tr[ÂB̂] = ÂT ,
d
dB̂

Tr[B̂] = 1̂, and |θi, xi⟩⟨θi, xi| = |θi, xi⟩⟨θi, xi|T , then
we find that

N∑
i=1

1

pr(θi, xi)
|θi, xi⟩⟨θi, xi| = −λ1̂ (21)

We can then multiply both sides by ρ̂:

N∑
i=1

1

pr(θi, xi)
|θi, xi⟩⟨θi, xi|ρ̂ = −λρ̂ (22)

and take the trace of both sides to find λ:

λ = −
N∑
i=1

= −N (23)

If we then plug this result back into Eq. (22) we then
discover that:

[
1

N

∑
i=1

|θi, xi⟩⟨θi, xi|
pr(θi, xi)

]
ρ̂ ≡ R̂(ρ̂)ρ̂ = ρ̂ (24)

where we have defined the so-called “iteration oper-
ator,” R̂(ρ̂). If a given density matrix ρ̂0 maximizes
Eq. (17b), then R̂(ρ̂0) ∝ 1 and therefore R̂(ρ̂0)ρ̂0 =
ρ̂0R̂(ρ̂0) ∝ ρ̂0, as well as R̂(ρ̂0)ρ̂0R̂(ρ̂0) ∝ ρ̂0. This last
relation is especially useful since it returns positive di-
agonal elements [10, 7]. Now if a given density matrix
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ρ̂ ̸= ρ̂0 does not maximize Eq. (17b), then applying the
operation above will result in a new density matrix that is
closer to the maximum likelihood. We can therefore con-
struct an iterative algorithm for finding the most likely
density matrix:

ρ̂(k+1) = N
[
R̂(ρ̂k)ρ̂kR̂(ρ̂k)

]
(25)

where N ensures that the trace of the new density ma-
trix is equal to unity. Following this iterative procedure,
we then have a way to determine a density matrix that
best matches the given quadrature statistics. Each sub-
sequent iteration will serve to increase the likelihood of
Eq. (17b). This method is very similar to the technique
of gradient descent, visually demonstrated by Fig. 13.

FIG. 13 Visualization of the method of gradient descent on
a complex 3D landscape. The technique of MLE for QST
described in the text has the potential to be an infinite di-
mensional landscape, so do your best to imagine that as you
see fit. Image Source

Now a closer inspection of Eq. (25) will reveal that
this can be a rather time-consuming problem depending
on the amount of data points in the quadrature statis-
tics, N , and dimensionality of the Fock space we wish to
consider, n. Viewing the operators in Eq. (25) as ma-
trices, R̂(ρ̂) will be of size (N xN) and ρ̂ will be of size
(n xn), leading to a computational run-time of O(N2n2).
This can be an absolutely huge number for one run, even
with a small number of quadrature data points (∼1000)
and low dimensionality of considered states (∼10). In
many situations within the realm of quantum informa-
tion processing, it is essential to be able to determine the
measured quantum state in real-time. As a classical ex-
ample, you can imagine how painful it would be for it to
take days before a text you sent to a friend to arrive to
their phone.12 Therefore, it becomes essential to vector-
ize the computational process such that density matricies

12 Obviously quantum phones are not a thing of the near future (if
ever), but it is fun to dream...

can be determined in real-time. This is explained further
in Sec. V.

B. Statistical Uncertainty

Before I show off some examples of this powerful tech-
nique, it is first important to discuss how we can sta-
tistical uncertainties that arise in our results. Since we
are unable to consider the full, infinite-dimensional space
spanned by our state, we will naturally be missing some
key information that allows us to precisely pin down the
quantum state we are dealing with.13 Additionally, in
a typical experiment we only sample with a subset of
quadrature values for a given quantum state, and since
the measurements exist within a continuous space, we
naturally are only looking at a subset of the full quan-
tum state.14

Therefore, it becomes an important step to understand
the uncertainty in the final reconstructed density matrix.
A common approach [11] to dealing with these uncertain-
ties lies in a Monte Carlo-like simulation. We essentially
look to simulate quadrature data that corresponds to our
estimated density matrix, ρ̂, which resulted from the it-
erative algorithm in Eq. (25), and perform MLE on the
generated quadratures to get a new set of density ma-
trices, {ρ̂′i}. The statistical uncertainty, δρ̂, in ρ̂ is then
given by the average difference between the simulated
data and the actual data given by:

δρ̂ =
1

N

N∑
i

|ρ̂− ρ̂i| (26)

This method then provides us with a good idea of the
statistical error of the given dataset. One very impor-
tant thing to note, however, is that this will not provide
information on whether or not the reconstructed state is
correct or not. All Eq. (26) will tell us is the statistical
uncertainty associated with the dataset, since it simu-
lates new quadrature data based off of what we think the
correct density matrix is. One way to test the actual ac-
curacy of the algorithm would be to use simulated data
that has a known quantum state, and see how well the
algorithm can reconstruct the individual elements.

13 This is especially true with coherent states.
14 An obvious solution to this would be to just take more measure-

ments, but as seen in the previous section, the computational
complexity of the reconstruction grows with the square of the
number of data points taken. If time was not a limiting factor,
then this would be a good solution, however, one of the more
desirable outcomes of such a process is to do this in real time
(elaborate more).

https://optimal.uva.nl/project-plan/project-plan.html
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C. Maximum Likelihood in Action

Now that we have developed both the MLE algorithm
with Eq. (25) as well as a way to evaluate the perfor-
mance of the reconstruction with Eq. (26), it’s now fi-
nally time to bring it all together and look at some recon-
structed density matrices! In all of the following exam-
ples, the Fock space under consideration was limited to
the first 10 Fock states (except for the coherent states),
10,000 data points were used for the state’s quadrature
statistics over the 2π phase scanning period, and 20 iter-
ations of Eq. (25) were used.15

As a nice and easy set of first examples, let’s recon-
struct the Fock states |0⟩ and |1⟩, whose quadrature dis-
tributions are given in Fig. (3a) and (3b) respectively.
The diagonal components of the reconstructed density
matrices can be seen in Fig. 14. As we can see, the
algorithm was able to accurately pick out the correct
states with high certainty from a fairly decently sized
state space, and almost all of the non-relevant terms are
nearly zero.

FIG. 14 First 10 diagonal components of the reconstructed
density matrix for the states (a) |0⟩ and (b) |1⟩.

Obviously that was a fairly easy example, and we
would hope that the algorithm would be able to recon-
struct complex states as well. Let’s now look at the re-
constructed elements of the two states from Fig. (8) as

15 The number of iterations of the MLE algorithm is highly depen-
dant on the number of data points used in the quadrature data.
From experience, any set of quadratures with at least 1,000 data
points will have convergence of Eq. (17b) for 20 iterations of Eq.
(25).

seen in Fig. (14). Unlike in the previous cases, we now
expect there to be non-zero diagonal elements of the den-
sity matrix, with values of ρ01(ψ1) = −ρ01(ψ2) = 0.5i,
and ρ10(ψ1) = −ρ10(ψ2) = −0.5i. As we can see, these
diagonal elements were almost perfectly reconstructed,
and we can provide a confident answer as to what the
original state in question was without having any prior
information besides the quadrature statistics. Aside from
a very small component of |2⟩ appearing in the recon-
struction,16 the rest of the density matrix elements are
again so small that they can practically be considered
zero.

FIG. 15 First 10 diagonal components of the reconstructed
density matrix for the states (a) |ψ1⟩ = 1√

2
(|0⟩+ i|1⟩) and (b)

|ψ2⟩ = 1√
2
(|0⟩ − i|1⟩).

Finally, we can look at coherent states, which may
be one of the more practical use-cases. Diagonal com-
ponents of the reconstructed density matrix for simu-
lated coherent states with average photon numbers of
n = 5.5 (α = 2.35) and n = 0.8 (α = 0.89) can be seen in
Fig. (16a) and (16b), respectively. The coherent states
are then fit to Eq. (15) to try and deduce α, and there-
fore n. Being able to accurate determine the coefficients
of the coherent state in question is essential for proce-
dures such as quantum process tomography [13, 1].

16 This is almost definitely a result of the statistical nature of
quadrature sampling. If we were able to increase the number
of data points considered in the simulation of these states, the
small component of |2⟩ would vanish much like how some of the
higher order states already have.
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FIG. 16 Diagonal components of the reconstructed density
matrix for simulated coherent states with average photon
numbers of (a) n = 5.5 (α = 2.35) and (b) n = 0.8 (α = 0.89).
The coherent states are then fit to Eq. (15) to try and deduce
α, and therefore n.

V. PUBLICLY AVAILABLE CODE

In addition to this document, I have also compiled a
public GitHub repository that contains all of the code as
well as instructions for performing simulated QST similar
to what was done throughout this document [2]. If you
have any questions or find any bugs with the code, please
feel free to email me at william.bidle@stonybrook.edu.
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