
Computer Science Department - Rutgers University Spring 2020

CS 440: Assignment 2 - Inference-Informed Action 16:198:440

This project is intended to explore how data collection and inference can inform future action and future data

collection. This is a situation frequently confronted by artificial intelligence agents operating in the world - based on

current information, they must decide how to act, balancing both achieving a goal and collecting new information.

Additionally, this project stresses the importance of formulation and representation. There are a number of roughly

equivalent ways to express and solve this problem, it is left to you to decide which is best for your purposes.

1 Background: MineSweeper

In the game minesweeper, you are presented with a square grid landscape of cells. Hidden in some of the cells are

‘mines’. At every turn, you may select a cell to uncover. At this point, one of two things will happen: if there is a

mine at that location, it explodes and you lose the game; if there is not a mine at that location, it reveals a number,

indicating the number of adjacent cells where there are mines. If the cell reveals 0, all the surrounding 8 cells are

empty of mines. If the cell reveals 8, all 8 adjacent cells must have mines. For any value in between, for instance

4, you know that half of the adjacent cells have mines, but you cannot be sure by this clue alone which half are

dangerous and which half are safe. Note: Common implementations of MineSweeper have other features, for instance

instantly opening cells that are obviously clear to save you some time. We are ignoring that for the purpose of this

assignment, as well as making some other small changes. Read carefully.

The goal of the game is to identify the locations of all the mines (if possible); by collecting clues and information, you

can begin to infer which cells are dangerous and which are safe, and use the safe cells to collect more information.

This process is iterated until, hopefully, all cells are either uncovered, marked as clear, or marked as mined.

Figure 1: In the first board, all cells are unknown. The first move reveals a 3, in which case we may infer that all

three surrounding cells have mines. We mark them as such, and know not to ever search those cells. The second

move reveals a 0, in which case we know that all 8 surrounding cells must be clear. We mark them as clear, and

know that we can search them without worry. Collecting data from the clear cells, we are able to infer the locations

of more mines.

The goal of this project is to write a program to play MineSweeper - that is, a program capable of sequentially

deciding what cells to check, and using the resulting information to direct future action.

1



Computer Science Department - Rutgers University Spring 2020

2 Program Specification

There should effectively be two parts to your program, the environent representing the board and where the mines

are located, and the agent. When the agent queries a location in the environment, the environment reports whether

or not there was a mine there, and if not, how many of the surrounding cells are mines. The agent should maintain

a knowledge base containing the information gained from querying the environment, and should not only be able to

update its knowledge base based on new information, but also be able to perform inferences on that information and

generate new information.

• The environment should take a dimension d and a number of mines n and generate a random d × d boards

containing n mines. The agent will not have direct access to this location information, but will know the size of

the board. Note: It may be useful to have a version of the agent that allows for manual input, that can accept

clues and feed you directions as you play an actual game of minesweeper in a separate window.

• In every round, the agent should assess its knowledge base, and decide what cell in the environment to query.

• In responding to a query, the environment should specify whether or not there was a mine there, and if not,

how many surrounding cells have mines.

• The agent should take this clue, add it to its knowledge base, and perform any relevant inference or deductions

to learn more about the environment. If the agent is able to determine that a cell has a mine, it should flag or

mark it, and never query that cell. If the agent can determine a cell is safe, it’s reasonable to query that cell

in the next round.

• Traditionally, the game ends whenever the agent queries a cell with a mine in it - a final score being assessed

in terms of number of mines safely identified.

• However, extend your agent in the following way: if it queries a mine cell, the mine goes off, but the agent

can continue, using the fact that a mine was discovered there to update its knowledge base (but not receiving

a clue about surrounding cells). In this way the game can continue until the entire board is revealed - a final

score being assessed in terms of number of mines safely identified out of the total number of mines.

This last modification allows the game to ‘keep going’ and avoids the situation where you accidentally find a mine

early in the game and terminate before the game gets interesting.

You may either do a GUI or text based interface - the important thing for the purpose of the project is the represen-

tation and manipulation of knowledge about the mine field. This will draw on the material discussed in a) Search, b)

Constraint-Satisfaction Problems, and c) Logic and Satisfiability. You must implement a basic MineSweeper agent,

described in the next section, and your own agent as an improvement on the basic one.

As usual, you must create your own code for solving the main issues and algorithmic problems in this assignment,

but you are welcome to use external libraries for things like visualizations, etc.

2.1 A Basic Agent Algorithm for Comparison

Implement the following simple agent as a baseline strategy to compare against your own:

• For each cell, keep track of

– whether or not it is a mine or safe (or currently covered)

2



Computer Science Department - Rutgers University Spring 2020

– if safe, the number of mines surrounding it indicated by the clue

– the number of safe squares identified around it

– the number of mines identified around it.

– the number of hidden squares around it.

• If, for a given cell, the total number of mines (the clue) minus the number of revealed mines is the number of

hidden neighbors, every hidden neighbor is a mine.

• If, for a given cell, the total number of safe neighbors (8 - clue) minus the number of revealed safe neighbors is

the number of hidden neighbors, every hidden neighbor is safe.

• If a cell is identified as safe, reveal it and update your information.

• If a cell is identified as a mine, mark it and update your information.

• If no hidden cell can be conclusively identified as a mine or safe, pick a cell to reveal at random.

2.2 An Improved Agent

The algorithm described for the basic agent is a weak inference algorithm based entirely on local data and comparisons

- it is effectively looking at a single clue at a time and determining what can be conclusively said about the state of

the board. This is useful, and should be quite effective in a lot of situations. But not every situation - frequently

multiple clues will interact in such a way to reveal more information when taken together.

Your improved agent should model the knowledge available, and use methods of inference to combine multiple clues

to draw conclusions when possible or necessary. Note that ‘knowledge’ to model includes potentially: a) whether

or not the square has been revealed, b) whether or not a revealed cell is a mine or safe, c) the clue number for a

revealed safe cell, and d) inferred relationships between cells.

3 Questions and Writeup

Answer the following questions about the design choices you made in implementing this program, both from a

representational and algorithmic perspective.

• Representation: How did you represent the board in your program, and how did you represent the information

/ knowledge that clue cells reveal? How could you represent inferred relationships between cells?

• Inference: When you collect a new clue, how do you model / process / compute the information you gain from

it? In other words, how do you update your current state of knowledge based on that clue? Does your program

deduce everything it can from a given clue before continuing? If so, how can you be sure of this, and if not,

how could you consider improving it?

• Decisions: Given a current state of the board, and a state of knowledge about the board, how does your

program decide which cell to search next? Aside from always opening cells that are known to be safe, you

could either a) open cells with the lowest probability of being a mine (be careful - how would you compute this

probability? or b) open cells that provide the most information about the remaining board (what could this

mean, mathematically? ). Be clear and precise about your decision mechanism and how you implemented it.

Are there any risks you face here, and how do you account for them?

3



Computer Science Department - Rutgers University Spring 2020

• Performance: For a reasonably-sized board and a reasonable number of mines, include a play-by-play progres-

sion to completion or loss. Are there any points where your program makes a decision that you don’t agree

with? Are there any points where your program made a decision that surprised you? Why was your program

able to make that decision?

• Performance: For a fixed, reasonable size of board, plot as a function of mine density the average final score

(safely identified mines / total mines) for the simple baseline algorithm and your algorithm for comparison.

This will require solving multiple random boards at a given density of mines to get good average score results.

Does the graph make sense / agree with your intuition? When does minesweeper become ‘hard’? When does

your algorithm beat the simple algorithm, and when is the simple algorithm better? Why?

• Efficiency: What are some of the space or time constraints you run into in implementing this program? Are

these problem specific constraints, or implementation specific constraints? In the case of implementation

constraints, what could you improve on?

• Improvements: Consider augmenting your program’s knowledge in the following way - tell the agent in advance

how many mines there are in the environment. How can this information be modeled and included in your

program, and used to inform action? How can you use this information to effectively improve the performance

of your program, particularly in terms of the number of mines it can effectively solve? Re-generate the plot of

mine density vs expected final score for your algorithm, when utilizing this extra information.

4 Bonus: Dealing with Uncertainty

Suppose that your mine detector has a certain false negative rate (pneg) at which it mistakenly reports a mined

cell to be empty. It additionally has a false positive rate (ppos) at which it mistakenly reports an empty cell to be

mined. This means that you cannot always trust the clue number / mine counts to be accurate.

How could you adapt your solve to each of the following cases (separately)? Try to implement at least one, and

experiment with what kind of performance hit results, in terms of your ability to safely clear the board.

i) You know in advance pneg = 0, ppos = 0.2.

ii) You know in advance pneg = 0.2, ppos = 0.

ii) You know in advance pneg = 0.2, ppos = 0.2.

4



Analysis for Project II: Minesweeper

Ilana Zane, William Bidle, Rakshaa Ravishankar

March 13, 2020

1) Representation: How did you represent the board in your program, and how did you
represent the information / knowledge that clue cells reveal? How could you represent
inferred relationships between cells?

Our minesweeper board was generated by a two dimensional array with randomly placed
mines. We created a main board and an agent board. Our main board displayed the
contents of every cell (i.e. whether it was a clue, safe cell, or a mine) and the agent board
displayed what agent could see, which was only updated after a new cell was uncovered
or an inference was made. We used these two boards to demonstrate what every cell con-
tained and how our agent was progressing throughout the game. For our basic algorithm,
we had our program sort through its knowledge base and add any definite mines our ’mine
fringe’, a list of cells to immediately flag to make sure that we do not select any of those
cells as our next move. We would then have our program check its ’safe fringe’, a list that
contained all safe cells, to choose one of those cells as our next spot. The two fringes were
populated whenever we checked the neighbors of a cell. Our knowledge based contained
the coordinates of every uncovered cell, their associated clue and the amount of neighbors
that cell has. We would use the knowledge base to make basic inferences about our current
move and then continue on with the game. Our inference algorithm was represented as a
matrix that was populated with linear equations associated with every uncovered cell on
the board. We used linear algebra operations to simplify our equations and make inferences
across them. If we had uncovered any definite information, such as whether a cell was safe
or a mine, we would update our mine fringe or safe fringe with this new information and
update our knowledge base.

2) Inference: When you collect a new clue, how do you model / process / compute the
information you gain from it? In other words, how do you update your current state of
knowledge based on that clue? Does your program deduce everything it can from a given
clue before continuing? If so, how can you be sure of this, and if not, how could you
consider improving it?

When we uncover a new clue, whether it was chosen through inference or a random move,
we determine whether it is a clue or a mine. If it is a mine no new information is uncovered.
If the uncovered cell presents us with a clue, we count the amount of neighbors this cell has
and perform our basic inferences through a series of conditional statements. If we see that
the number of neighbors is equal to the value of the clue we know that all neighbors are
mines and those neighbors can be added to the mine fringe. If the number of surrounding
mines minus the value of the clue equals zero we know that all surrounding neighbors are
safe and can be added to the safe fringe. If we are unable to successfully determine whether
or not a cell is a mine or a safe cell, we add our newly uncovered cell to our knowledge base.
The knowledge base contains all such cells along with their associated coordinates, their

1



clue value, and the number of neighbors they have. As our agent progresses, we updated
our knowledge base to keep track of how many neighbors a cell has as new cells are revealed
across the board. We also continuously update our mine fringe and safe fringe. Our more
advanced algorithm is able to make inferences across several clues. If our basic logic fails,
meaning that were unable to successfully determine the nature of an uncovered cell, we
model the board through a matrix that contains linear equations. For every uncovered
clue, there is an associated linear equation. In every linear equation, we use the number
”1” to represent an uncovered cell and a ”0” to represent every unopened cell/mine. We
have a vector that contains the values of every clue that is represented in our matrix. Once
our augmented matrix is populated with all equations, we reduce the equations until the
matrix is as close as possible to a reduced row echelon form. From there, we store our re-
duced linear equations into our knowledge base where we analyze the information we have
through conditional statements in order to determined whether or not we have definitively
discovered a cell that is safe or is a mine. These conditional statements are the same ones
that are used when analyzing our basic algorithm. If at any point the sum of the variables
in a reduced equation are equal to 0, then we know that each variable and its respective
coordinate should be updated in the knowledge base as a safe spot. We also check to see
if the number of variables in our reduced equation matches the value of the clue. If they
are equal this means that all of the variables in that equation are mines. We know that
our inference algorithm can deduce everything that it can because for a given clue all of
the possible equations and moves are considered across the board. As seen in Figure 1,
our agent that uses inference makes less random moves than the agent without inference
because our inference agent is able to deduce more information from the board. We also
watched through a few solutions step by step to see if our agent missed any crucial moves.
We failed to find any anomalies or surprising moves. Thus, we can say that our inference
agent is working.

Figure 1

2



3) Performance: For a reasonably-sized board and a reasonable number of mines, include a
play-by-play progression to completion or loss. Are there any points where your program
makes a decision that you don’t agree with? Are there any points where your program
made a decision that surprised you? Why was your program able to make that decision?

To see a play by play progression of our agent solving the board watch StepByStepAnal-
ysis.mov (We also included MinesweeperVideo.mov that shows the inference agent solves
a 15x15 maze with low density and high density). The movie displays our advanced agent
solving the board of size 15x15 and a density of 0.4. Below are snapshots from the movie
that displays instances where our basic logic makes an inference from one clue and another
where our advanced agent makes an inference across multiple clues. Figures 2 and 3 display
how the basic algorithm makes a decision. In Figure 2 the yellow circle represents a flag
for the cell with the clue of 4 and the red circle represents all of the neighbors of that clue.
Whenever the neighbor of a clue is uncovered or marked as a mine, a parameter in our
knowledge base temporarily decrements the value of the clue. In this instance, as soon
as the neighbor of 4 is marked as a flag, the clue value decrements to 3. Our basic logic
was then able to see that the updated clue of 3 has three remaining neighbors and can
infer that all of them are mines that need to be flagged (flags are in the green circle). In
Figures 4 and 5 our advanced logic was able to make an inference that may not be intuitive
to the average player. When making an inference for the cell with clue 2 (in the yellow
circle) our agent realizes that the cell with clue 1 (right above clue 2) must have a mine
within the blue circle. This leaves the remaining mine of clue 2 in the red circle. With
this information the agent can come to the conclusion that the flag must go within the red
circle. In Figure 4 we see that a flag is correctly revealed within the red circle. Our ad-
vanced agent thus utilized information from two different clues to come to this conclusion.
Overall, our advanced agent did not make any surprising moves as it followed every step in
our program as expected, deducing as much as it could with what it was given. The only
moments where a mine was uncovered was through selecting a random cell when no more
inferences could be made.

3



Figure 2 Figure 3

Figure 4 Figure 5

4) Performance: For a fixed, reasonable size of board, plot as a function of mine density the
average final score (safely identified mines / total mines) for the simple baseline algorithm
and your algorithm for comparison. This will require solving multiple random boards at
a given density of mines to get good average score results. Does the graph make sense
/ agree with your intuition? When does minesweeper become ‘hard’? When does your
algorithm beat the simple algorithm, and when is the simple algorithm better? Why?

For a board of size 20x20 we ran our simple algorithm and our inference algorithm multiple
times at different densities to find their average score at each density, as seen in Figure 6.
We anticipated that when the mine density was closer to 0.0 our basic algorithm and our
advanced algorithm would have similar performances since these mazes would be able to
be solved with basic logic. We also anticipated that as the mine density approached 1.0,
the chances of our algorithms selecting a mine was much higher. When a mine is selected
no other new information is revealed and our knowledge base cannot be populated with
useful information. Without enough information the algorithms resort to random moves,
further increasing our chances of selecting another mine. As seen in Figure 6, our inference
algorithm generally returns a better score than our basic algorithm. This is because after
a certain density, around 0.15 and beyond, our inference algorithm has enough informa-
tion to analyze multiple clues at the same time and make more inferences than our basic
algorithm. The chances of our inference algorithm to select a mine upon making a random
move is lower, so the random move is likely to uncover useful clues that can be added to
our knowledge base.
Our minesweeper game becomes ”hard” at a mine density of above 0.6. At this density,
both algorithms have a score of approximately 0.5 and the score increasingly becomes lower
tending towards a score of 0.0. Our basic algorithm, on average, does not return a better
score than our inference algorithm. However, at a low mine density and high mine density,

4



the scores between the algorithms are very close, but our basic algorithm has a better
time complexity throughout– finishing its analysis of clues much faster than the inference
algorithm, as seen in Figure 7. Because of this, we conclude that only at a very low and
very high mine density does our basic algorithm perform better.

Figure 6

Figure 7

5) Efficiency: What are some of the space or time constraints you run into in imple-
menting this program? Are these problem specific constraints, or implementation specific
constraints? In the case of implementation constraints, what could you improve on?

5



Space and time constraints arose while we were implementing our inference algorithm.
As the board size increased our inference algorithm took longer to run because we had
to analyze more clues. This is a problem specific constraint because with any game of
minesweeper as the board size increases, the time it will take to run through all of the
clues and to draw comparisons will increase. However, this issue could have been improved
through our implementation. For our inference algorithm we chose to represent our knowl-
edge base as a matrix that stores linear equations for all of the uncovered cells in our board.
In order to decrease the time it takes for our inference algorithm to draw comparisons we
could have only taken cells that are adjacent to our current position into consideration. If
we had done this our matrix would’ve been populated with equations that were relevant
only to our current position. When we take the entire board into consideration for every
clue our equations are of size dim2, so it would be better to have a matrix that only con-
tains the equations for immediate cells.

6) Improvements: Consider augmenting your program’s knowledge in the following way
- tell the agent in advance how many mines there are in the environment. How can this in-
formation be modeled and included in your program, and used to inform action? How can
you use this information to effectively improve the performance of your program, particu-
larly in terms of the number of mines it can effectively solve? Re-generate the plot of mine
density vs expected final score for your algorithm, when utilizing this extra information.

After adding the number of mines that are in the environment to the agent’s knowledge
base, we checked the performance. Figure 8 below shows the result for our advanced algo-
rithm with and without the additional information. It can be seen that there is little to
no improvement in in the overall score achieved for any density, which is fairly expected.
By giving the agent this additional information, we can improve our last resort random
choice when nothing else can be deduced from inference. For a given clue, the probability
that its neighbors contain a mine is equal to the clue divided by the number of neighbors.
For example, a clue of 1 with three neighbors would result in a probability of one-third for
each cell to be a mine. For the rest of the cells in the maze the probability of a random
move would be changed to the total mines remaining divided by the number of cells left.
We would then check if the probability of a cell containing a mine due to one clue would
be less than the overall probability that a cell contained a mine and choose the one with
the lower value. By doing this, we would ultimately improve our random pick method.
Even though there were no overall improvements to the score, there was a way to improve
the performance with the new information. If, by chance, the algorithm already identified
all of the mines in the maze and either flagged or set them off then the game could end
there and a final score would be given. Not having to go through every cell to complete
the game allows for a better run time. While a benefit, this only occurred towards the end
of almost every game (if at all) and would therefore only speed up the runtime by a small
amount.

6



Figure 8

,Member Contributions,
everyone contributed equally

7



Minesweeper 2.5

Ilana Zane, William Bidle, Rakshaa Ravishankar

April 12, 2020

1 Computation

1.1 Methodology

We utilized the advanced agent from Project 2 and built upon it. The agent from Project
2 would go through any obvious moves first, and then try to make any inferences it could
for the board. If nothing at all could be determined from this step, it then needed to access
the probabilities of our ‘active unknowns,’ which are cells that have some information tied
to them (i.e. an adjacent cell has been revealed). To get these probabilities, we utilized
the reduced matrix that our inference agent generated for us and created a list of potential
solutions. We obtained the potential solutions by taking the dot product of our matrix
with vectors of 1’s and 0’s (indicating a variable being safe (0) or a mine (1)) and checked
whether or not the result was equal to our answer vector, which contains revealed clues.
From these solutions, we determined the probabilities by averaging how often a variable
appeared as a mine (see Figure 5).

1.2 Reducing Variables

In general, if we have n variables per equation and each of these are either safe (0), or
a mine (1), then our program will generate 2n possible solutions that we need to check.
For larger boards, we reach a very unreasonable number of solutions that the computer
will have to simulate. If our board was even 10x10, the 100 cells would result in 100
variables per equation, leading to 2100 potential solutions that we need to check. However,
this number can be drastically reduced. We only need to simulate potential solutions that
include our ‘active unknowns,’ and not include any ‘inactive unknowns.’ In our situation,
inactive unknowns correspond to any 0 columns in our reduced matrix, which tells us
that no information has been revealed about that cell and its neighbors. This reduces our
potential solutions and we end up simulating a number of solutions within a reasonable
amount of time (see Figure 3).

1.3 Approximation

Even after this reduction, there were still scenarios where equations have a significant
amount of variables. The result would be a very slow run time due to a large amount of
computations. We found that any situation with more than 18 variables per equation led
to our program taking a long time to compute possible solutions for just one step in the
game. In order to solve this problem, we set a limit to when our program would calculate
exact probabilities and when it would begin to estimate. If our equations exceeded 18
variables (i.e. greater than 218 possible vectors to check), we would only simulate from a
random selection of 218 vectors in the total amount. For example, if we had 20 variables,
we would randomly select 218 of the 220 total vectors to then continue and find the dot

1



product for possible solutions. This would yield approximate probabilities, however since
our sample size is relatively large, we would end up with values that were close to the exact
ones. The figure below shows an example where we simulate the exact probability vs. the
approximate probability for a system of equations containing 20 variables (the X-axis is
the variable number and the Y-axis is probability value). Even though we are only looking
at 218 out of the 220 vectors in our approximation, the probability results seen are close to
the exact answer. In some places we can see that the approximate is even the same value
as the exact, so not only would our approximation help with space/time constraints, but
it would also keep accuracy in the results.

Figure 1

1.4 Example

1.4.1 Generating Solutions

We have created a step by step explanation as to how we calculated general probabilities
using the example provided in the Project 2.5 Assignment PDF.

Figure 2

Based on the given variables, our inference agent creates a system of linear equations
(our augmented matrix) and the associated answer vector that contains all clue values.

2



Immediately our inference agent determines that cell B is a mine and D is safe. The
equations are created by looking at each uncovered cell and adding its clue value into our
answer vector. In the assignment’s example, the cell of clue 1 has remaining neighbors
A and C (D has been reduced to be safe). The cell with clue 2 has remaining neighbors
A and C as well, and since B is a mine, our clue value is reduced to 1. Therefore the
two equations for cells 1 and 2 are the same so we reduced the redundant equation to
just A+C=1. The clue value for 3 is reduced to 2 because B is a mine, so the resulting
equation is C+E+F=2. The full linear equations are then generated into an augmented
matrix, where active variables in the equation are represented by 1s and inactives by 0.
As explained in the approximation section of our analysis, if there are any columns of our
matrix that consist of only zeros, we exclude those columns from our matrix to prevent
our program from analyzing cells that are already declared as safe/mine or are inactive
unknowns. For our example columns 2 and 4 are removed to create a simpler matrix. The
final reduced matrix is now in the form we need, with A+C=1 and C+E+F=2, without
any extraneous variables.

Figure 3

1.4.2 Generating Probability

For our six variable example above, if we were to include the inactive unknowns (zero
columns), we would end up with 26 (64) potential vector solutions that we would need
to check. However, if we eliminate these inactive unknowns from our equations, then we
will reduce this total amount. Since B and D give us no helpful information (we already
deduced what we could from them), we can safely look at only the remaining 4 variables
A,C, E and F. This then leads to only 24 (16) potential solutions that we need to check.
The generated solutions can be seen below.

3



Figure 4

We check if these solutions are valid by taking the dot product between them and our
matrix. If the resulting vector is equal to our clue vector (in our case it would be [1, 2]),
then we have a valid solution. Of the 16 possible vectors, only 3 yielded valid solutions to
our system of equations as seen below. The final step would be to take the average value
of each column (thus each variable), and that average value would tell us how likely that
spot is to be a mine. As expected, we find that A has probability 1

3 to be a mine, and the
rest have probability 2

3 to be a mine.

Figure 5

2 Basic Cost Agent

2.1 Data Analysis

The above plot shows the results of % Average Cost vs. Mine Density for our agent from
Project 2 (in blue) and our agent that minimizes cost (in red). In general, as we increase the
mine density of a board, we expect to see the percentage of mines stepped on increase (i.e.
the cost increase) for any agent. Both agents can solve the game with basic logic when the
mine density is low around 0.0 - 0.2 and both struggle to obtain enough information when
the density is higher around 0.8 - 1.0. Therefore, we expect each of their performances to
be similar in these regions and this is exactly seen in Figure 6. When the mine density is
within the range of 0.2 - 0.8, we see that our cost agent ends up stepping on approximately
5% fewer mines than our agent from the previous project. Instead of picking randomly
when we are stuck with no obvious moves, which is exactly what the Project 2 agent does,
we use our simulated probabilities and make a decision based on these. Since we are now

4



accurately predicting what the probabilities of each active unknown cell is, we end up with
more information about the board than if we just pick randomly. This results in a better
chance to select a safe square than if we were to pick randomly.

Figure 6

2.2 When and What to Pick

The methodology behind the cost agent was fairly simple, looking only at the cell with
the lowest probability of being a mine and making our decision based on its probability
value. In general, the probability that a completely random (i.e. inactive unknown) square
is a mine is exactly 1

2 . Since we have no information about how many mines are left
and we know the only possibilities are either mine or safe, then the 1

2 probability is the
only possibility for a completely random move. By utilizing this information, if the lowest
probability for an active known square being a mine is less than 1

2 , the obvious choice
for our cost agent is to pick that square since we have less of a chance of stepping on a
mine. If the lowest probability is greater than 1

2 , then again, the obvious choice is to pick
randomly from the inactive unknowns, since our chance of stepping on a mine is smaller.
In the event that we have a tie, that is the lowest probability that an active unknown
is a mine and the probability an inactive unknown is a mine, are both 1

2 , then we must
break the tie. We decided that it would be best to reveal the active unknown square, as
we would end up revealing more information about the board. Any information revealed
around an active unknown square would potentially lead to more information about other
surrounding active unknown squares and we would potentially be able to open up more
relevant information for the game. Choosing an inactive unknown would only add the list
of active unknowns and not progress our game in a helpful way.

5



3 Basic Risk Agent

3.1 Data Analysis

The agent for minimizing risk shows an improvement for a mine density greater than 0.2
and up until 0.8, which is similar to what we saw in the cost agent. In this region, the
minimizing risk agent tends to make definite moves about 5% more often than the Project
2 agent does. This occurs because this agent tries to minimize the number of uncertain
moves (risk) made in the game by utilizing information it gains from simulating moves and
looking ahead.

Figure 7

3.2 Methodology

Unlike the cost agent, which simply looks at the lowest probability of an active unknown
being a mine, the risk agent has to look a step ahead. The risk agent simulates the outcome
of an active unknown by marking it first as a mine and then as a safe, determining the
resulting number of definite moves we uncover in each scenario. This was achieved by
creating a temporary knowledge base with the current active unknowns and checking the
possible neighbors of these cells. The agent then followed the basic rules set forth in the
previous project to determine any obvious safe or mine cells and kept track of them in the
temporary knowledge base. The results get stored into the variables R and S, where R
is the number of squares the agent could work out if the possible move were a mine and
S is the number of squares the agent could work out if the possible move were safe. We
then insert both values into Equation 1 to find the expected number of squares that can
be worked out when opening the current possible move.

qR + (1 − q)S (1)

Where q is the probability of the possible move being a mine. This equation then tells

6



us the expected number of moves we will be able to immediately determine for a given
cell. After simulating this value for each of our active unknowns, we then choose the cell
that has the highest expected value to be revealed. The calculation of risk and simulation
of sample possible moves is only necessary if nothing can be determined by the knowledge
base after inferences are made, the safe and mine fringes have been traversed and emptied
and moves that minimize cost are made. The “improved” decision making is in place of
making a random move, since it chooses a cell with a greater probability of the rest of the
board being solved, taking into account whether or not the cell could be a mine.

4 Bonus

We had expected that each agent would be better at minimizing its respective quantity, as
that was the main priority for each of them. Surprisingly, we found that the risk minimizing
agent is better when it comes to minimizing both cost and risk. Even though there isn’t a
significant difference between the two, the risk agent outperforms the cost agent by a very
small percentage when minimizing cost. In hindsight, we think this result makes sense
because the risk agent looks a step ahead in the game, whereas the cost agent only uses
information from the immediate state of the board. Additionally, the minimizing risk agent
works to minimize the number of uncertain moves and perhaps hits less mines overall for
this reason.

Figure 8

7



Figure 9

5 Improved Cost Agent

5.1 Basic/Improved Cost

For our improved agent we decided to build upon the basic cost agent that we previously
created. As explained before, our basic cost agent currently assigns each active unknown
a probability that it is a mine based on information we gathered from our inference step.
It will then analyze the cell with the lowest probability and make a decision based off of
the probability value. Our improved cost agent takes this same logic a step further by
utilizing the concept of conditional probability in order to look a step further into the
game. Therefore, when faced with similar scenarios, the two agents will tend to behave
differently and make different decisions, even if the overall outcome is the same.

5.2 Simulation

In order to simulate conditional probabilities, we first needed to analyze all of the valid
solutions that were previously generated. For example, if our system of linear equations
contained variables [A,B,C] we would simulate clicking on A and find the probabilities
that B and C are mines given A. We would continue this process for nP2 permutations,
where n is the total number of variables in our equation, thus calculating all conditional
probabilities are calculated for each variable. If we were to calculate the probability of B
being a mine given A, we would use the following equation:

P (B mine∣A) = P (A mine) ∗ P (B mine∣A mine) + P (A safe) ∗ P (B mine∣A safe) (2)

With the list of valid solutions we have generated we can find the probability of A
being a mine and the probability of A being safe. We then look for solutions where A

8



is strictly a mine— from those solutions we determine the probability of B being a mine.
Solutions where A is strictly a safe are found and we determine the probability of B being
a mine based on those solutions. All four of these probabilities are combined to find the
total conditional probability for each variable being a mine given each of the remaining
variables. Each variable will have n -1 possible conditional probabilities associated with it,
and from this point we select the smallest probabilities from this set. Once the smallest
probability has been selected for each variable we compare probabilities across our variables
and select the variable that is associated with the smallest conditional probability— this
is the next cell to be uncovered. However, if there is more than one variable that shares
the smallest conditional probability we have to resolve the tie. We do this by replacing
those tied conditional probabilities with their original probabilities (i.e. the probabilities
that would have been used by our basic cost agent).

5.3 Comparison

Figure 10 shows that our improved cost performs slightly better than our basic cost agent.
This occurs when the density is within 0.4 and 0.9, because outside of this region both
methods can solve the game with basic strategies. Even though both agents attempt to
minimize the cost of the next move, the advanced agent ultimately outperforms the basic
one. By looking ahead and utilizing Equation 2 to find conditional probabilities of moves,
the advanced agent ultimately steps on fewer mines.

Figure 10

5.4 Things to do Differently

We could definitely make our improved cost agent better. Even though it performs better
than the basic cost agent, it only simulates one step into the future. One of the biggest
issues we had while doing this project was handling the vast amount of potential solutions
that would occasionally arise for some boards. As we explained in Question 1, there were

9



some areas where we could simplify and make approximations to speed up our calculations.
This ended up working well for the basic cost and risk agents, however, when we moved to
the advanced cost agent similar problems arose. On top of the large amount of immediate
probabilities we needed to simulate for each active unknown, we then also had to calculate
every permutation of conditional probabilities. Since we didn’t make any approximations
for calculating conditional probabilities, we were only able to simulate one step into the
future.

Member Contributions: All members contributed equally

10


	Background: MineSweeper
	Program Specification
	A Basic Agent Algorithm for Comparison
	An Improved Agent

	Questions and Writeup
	Bonus: Dealing with Uncertainty

