
Computer Science Department - Rutgers University Spring 2020

CS 440: Assignment 1 - Search 16:198:440

This project is intended as an exploration of various search algorithms, both in the traditional application of path

planning, and more abstractly in the construction and design of complex objects.

1 Environments and Algorithms

Generating Environments: In order to properly compare pathing algorithms, they need to be run multiple

times over a variety of environments. A map will be a square grid of cells / locations, where each cell is either

empty or occupied. An agent wishes to travel from the upper left corner to the lower right corner, along the shortest

path possible. The agent can only move from empty cells to neighboring empty cells in the up/down direction, or

left/right - each cell has potentially four neighbors.

Figure 1: Successful and Unsuccessful Maze Environments.

Maps may be generated in the following way: for a given dimension dim construct a dim x dim array; given a

probability p of a cell being occupied (0 < p < 1), read through each cell in the array and determine at random if

it should be filled or empty. When filling cells, exclude the upper left and lower right corners (the start and goal,

respectively). It is convenient to define a function to generate these maps for a given dim and p.

Figure 2: Maps generated with p = 0.1, 0.3, 0.5 respectively.

Path Planning: Once you have the ability to generate maps with specified parameters, implement the ability to

search for a path from corner to corner, using each of the following algorithms:

1

Computer Science Department - Rutgers University Spring 2020

• Depth-First Search

• Breadth-First Search

• A∗: where the heuristic is to estimate the distance remaining via the Euclidean Distance

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2. (1)

• A∗: where the heuristic is to estimate the distance remaining via the Manhattan Distance

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|. (2)

• Bi-Directional Breadth-First Search

For any specified map, applying one of these search algorithms should either return failure, or a path from start to

goal in terms of a list of cells taken. (It may be beneficial for some of these questions to return additional information

about how the algorithm ran as well.)

2 Analysis and Comparison

Having coded five path-generating algorithms, we want to analyze and compare their performance. This is important

not only for theoretical reasons, but also to check to make sure that your algorithms are behaving as they should.

• Find a map size (dim) that is large enough to produce maps that require some work to solve, but small enough

that you can run each algorithm multiple times for a range of possible p values. How did you pick a dim?

• For p ≈ 0.2, generate a solvable map, and show the paths returned for each algorithm. Do the results make

sense? ASCII printouts are fine, but good visualizations are a bonus.

• Given dim, how does maze-solvability depend on p? For a range of p values, estimate the probability that

a maze will be solvable by generating multiple mazes and checking them for solvability. What is the best

algorithm to use here? Plot density vs solvability, and try to identify as accurately as you can the threshold p0

where for p < p0, most mazes are solvable, but p > p0, most mazes are not solvable.

• For p in [0, p0] as above, estimate the average or expected length of the shortest path from start to goal. You

may discard unsolvable maps. Plot density vs expected shortest path length. What algorithm is most useful

here?

• Is one heuristic uniformly better than the other for running A∗? How can they be compared? Plot the relevant

data and justify your conclusions.

• Do these algorithms behave as they should?

• For DFS, can you improve the performance of the algorithm by choosing what order to load the neighboring

rooms into the fringe? What neighbors are ‘worth’ looking at before others? Be thorough and justify yourself.

• On the same map, are there ever nodes that BD-DFS expands that A∗ doesn’t? Why or why not? Give an

example, and justify.

Bonus: How does the threshold probability p0 depend on dim? Be as precise as you can.

2

Computer Science Department - Rutgers University Spring 2020

3 Generating Hard Mazes

So far we have looked only at randomly generated mazes, and looked at the average behavior of algorithms over

these mazes. But what would a ‘hard’ maze look like? Three possible ways you might quantify hard are: a) how

long the shortest path is, b) the total number of nodes expanded during solving, and c) the maximum size of the

fringe at any point in solving.

One potential approach to generating hard mazes would be the following: for a given solving algorithm, generate

random mazes and solve them, keeping track of the ‘hardest’ maze generated so far. This would, over time, result in

progressively harder mazes. However, this does not learn from past results - having discovered a particularly difficult

maze, it has no mechanism for using that to discover new, harder mazes. Each round starts from scratch.

One way to augment this approach would be a random walk. Generate a maze, and solve it to determine how

‘hard’ it is. Then at random, add or remove an obstruction somewhere on the current maze, and solve this new

configuration. If the result is harder to solve, keep this new configuration and delete the old one. Repeat this

process. This has some improvements over repeatedly generating random mazes as above, but it can be improved

upon still. For this part of a project, you must design a local search algorithms (other than the directed random

walk described here) and implement it to try to discover hard to solve mazes. Mazes that admit no solution may be

discarded, we are only interested in solvable mazes.

• What local search algorithm did you pick, and why? How are you representing the maze/environment to be

able to utilize this search algorithm? What design choices did you have to make to make to apply this search

algorithm to this problem?

• Unlike the problem of solving the maze, for which the ‘goal’ is well-defined, it is difficult to know if you have

constructed the ‘hardest’ maze. What kind of termination conditions can you apply here to generate hard if

not the hardest maze? What kind of shortcomings or advantages do you anticipate from your approach?

• Try to find the hardest mazes for the following algorithms using the paired metric:

– DFS with Maximal Fringe Size

– A∗-Manhattan with Maximal Nodes Expanded

• Do your results agree with your intuition?

4 What If The Maze Were On Fire?

All solution strategies discussed so far are in some sense ‘static’. The solver has the map of the maze, spends some

computational cycles determining the best path to take, and then that path can be implemented, for instance by a

robot actually traveling through the maze. But what if the maze were changing as you traveled through it? You

might be able to solve the ‘original’ maze, but as you start to actually follow the solution path, the maze may change

and that solution may no longer be valid.

Consider the following model of the maze being on fire: any cell in the maze is either ‘open’, ‘blocked’, or ‘on fire’.

Starting out, a randomly selected open cell is ‘on fire’. You can move between open cells or choose to stay in place,

once per time step. You cannot move into cells that are on fire, and if your cell catches on fire you die. But each

time-step, the fire may spread, according to the following rules: For some ‘flammability rate’ 0 ≤ q ≤ 1

• If a free cell has no burning neighbors, it will still be free in the next time step.

3

Computer Science Department - Rutgers University Spring 2020

• If a cell is on fire, it will still be on fire in the next time step.

• If a free cell has k burning neighbors, it will be on fire in the next time step with probability 1− (1− q)k.

Note, for q = 0, the fire is effectively frozen in place, and for q = 1, the fire spreads quite rapidly. Additionally,

blocked cells do not burn, and may serve as a barrier between you and the fire.

How can you solve the problem (to move from upper left to lower right, as before) in this situation?

Consider the following base line strategies:

Strategy 1) At the start of the maze, wherever the fire is, solve for the shortest path from upper left to lower right, and

follow it until you exit the maze or you burn. This strategy does not modify its initial path as the fire changes.

Strategy 2) At every time step, re-compute the shortest path from your current position to the goal position, based on the

current state of the maze and the fire. Follow this new path one time step, then re-compute. This strategy

constantly re-adjusts its plan based on the evolution of the fire. If the agent gets trapped with no path to the

goal, it dies.

Generate a number of mazes at the dimension dim and density p0 as in Section 2. Be sure to generate a new maze

and a new starting location for the fire each time. Please discard any maze where there is no path from the initial

position of the agent to the initial position of the fire - for these mazes, the fire will never catch the agent and the

agent is not in any danger. For each strategy, plot a graph of ‘average successes vs flammability q’. Note, for each

test value of q, you will need to generate multiple mazes to collect data. Does re-computing your path like this have

any benefit, ultimately?

Come up with your own strategy to solve this problem, and try to beat both the above strategies. How can you

formulate the problem in an approachable way? How can you apply the algorithms discussed? Note, Strategy 1 does

not account for the changing state of the fire, but Strategy 2 does. But Strategy 2 does not account for how the fire

is going to look in the future. How could you include that?

A full credit solution must take into account not only the current state of the fire but potential future states of the

fire, and compare the strategy to Strategy 1 and Strategy 2 on a similar average successes vs flammability graph.

4

Analysis for Assignment One: Maze Runner

Ilana Zane, William Bidle, Abinaya Sivakumar

February 16, 2020

1) Find a map size (dim) that is large enough to produce maps that require some work
to solve, but small enough that you can run each algorithm multiple times for a range of
possible p values. How did you pick a dim?

We experimented with different maze sizes and we found that the most ideal size was
a dim size equal to 75. Looking ahead in the project we knew we had to run our code
often (i.e. when plotting Solvability vs. Density), so if our dimension size was too large it
would take too much time to produce mazes and run the algorithms. This was especially
noticeable in A*-Euclidean, as for larger mazes, it would run slower due to the amount of
comparisons made with long float values. The maze had to also be detailed enough to give
adequate, yet varying results for each algorithm. We were able to run much bigger mazes
(such as a dim of 500), however these mazes took a little too long to process later and were
hard to analyze when plotted. A dimension size of 75 met each of the above requirements
and was not too big that it would be tedious to show our results graphically.

2) For p ≈ 0.2, generate a solvable map, and show the paths returned for each algorithm.
Do the results make sense? ASCII printouts are fine, but good visualizations are a bonus.

Below are the generated paths for the 5 algorithms over the same 75 by 75 maze (see
Figure 1 through Figure 5). Each of these results match up exactly with what we expected
each algorithm to return. Since we are dealing with a finite length puzzle and the position
of the goal node is known, each of the algorithms besides DFS will return the shortest path
length. Even the algorithms without a heuristic (BFS and Bi-Directional BFS) will return
the shortest length, as it will be the first solution they find. For example, if we watch the
progression of the BFS algorithm (see BFS.mov), we can see that BFS will expand almost
all of the nodes in the maze before finding the goal node and will definitely find the shortest
path.

1

Figure 1 Figure 2

Figure 3 Figure 4

Figure 5

2

3) Given dim, how does maze-solvability depend on p? For a range of p values, estimate
the probability that a maze will be solvable by generating multiple mazes and checking
them for solvability. What is the best algorithm to use here? Plot density vs solvability,
and try to identify as accurately as you can the threshold p0 where for p < p0, most mazes
are solvable, but p > p0, most mazes are not solvable.

As seen in Figure 6, for a fixed dimension size of 75, each algorithm tends to behave
similarly as we increase the probability of a cell being occupied. This is fairly expected,
as we are dealing with a finite dimension size, and therefore will have all of our algorithms
find a solution to the goal if one is available. On average, if one cannot find a solution,
then the others will not be able to as well, as seen when p is approximately 0.4 (the graph
is cut off because everything beyond 0.4 is zero). The data in Figure 6 was generated by
running each algorithm over 75 mazes for probabilities in the range [0, 1], averaging the
values together, and making a cut at p = 0.4. We can see from the data that mazes become
mostly solvable at and below a probability of approximately 0.3, and are mostly unsolvable
for any p greater than 0.3.

Figure 6

4) For p in [0, p0] as above, estimate the average or expected length of the shortest path
from start to goal. You may discard unsolvable maps. Plot density vs expected shortest
path length. What algorithm is most useful here?

Based on Figure 7, we see that all of the algorithms have the same outcome, except for
DFS. At around a density of 0.4, the path length rapidly decreases towards 0 because from
the previous graph (Figure 6) we see that at the same density leads to unsolvable mazes,
and an unsolvable maze will have a path length of 0. Based solely off of shortest path
length returned, it would be most useful to use any algorithm besides DFS.

3

Figure 7

5) Is one heuristic uniformly better than the other for running A*? How can they be
compared? Plot the relevant data and justify your conclusions.

We found that the best heuristic for running A* is Manhattan. Since both Manhattan
and Euclidean return the shortest path length for a given maze, the best way to compare
the two would be to look at their run time for different dimension sizes. As seen in Figure
8, both heuristics have approximately the same performance time. However, as the dimen-
sion size continues to grow, Euclidean becomes less time efficient compared to Manhattan.
We know that both heuristics are admissible as it never overestimates the true remaining
cost from a given node to the goal. The difference between the two is that the Manhattan
heuristic is closer to the true cost, which results in us expanding less nodes than with the
Euclidean heuristic.

4

Figure 8

6) Do these algorithms behave as they should?

We expected DFS to be inefficient because it tries to explore only one branch of the fringe
instead of expanding its possibilities outwards. DFS ends up missing the most efficient
path unlike the other algorithms, which do return the most efficient path in every run as
seen in Figure 7. BFS and Bi-Directional BFS will expand most of the maze as will the
two heuristics.

7) For DFS, can you improve the performance of the algorithm by choosing what or-
der to load the neighboring rooms into the fringe? What neighbors are ‘worth’ looking at
before others? Be thorough and justify yourself.

From the beginning, we realized that DFS would be different from the algorithms in the
sense that the order in which moves were loaded into the fringe would matter greatly. Since
DFS wants to pick a branch and keep pushing all the way through until it gets stuck, it
would make the most sense to prioritize pushing it down branches that advance us towards
the goal node with the least amount of moves. We decided to prioritize moving downwards
and then to the right. DFS only checked possible upwards and left if it wasn’t able to move
to the left or downwards.

8) On the same map, are there ever nodes that BD-BFS expands that A* doesn’t? Why
or why not? Give an example, and justify.

Yes, the algorithms are meant to explore for the shortest path in different ways. When com-
paring Bi-Directional BFS with A*-Manhattan on a grid with no obstacles, Bi-Directional

5

BFS explores almost the entire grid before returning the shortest path, while A*-Manhattan
strictly explored the left side of the graph and the bottom before returning the shortest
path. Bi-Directional BFS will try to explore the entire grid because starting from the upper
left corner and the bottom right corner, the two paths will explore every child added to
the fringe before the two paths meet in the middle. A*-Manhattan will prioritize moves
that can be made downwards and to the right, which is why the nodes that are explored
are mostly limited to those two directions and the total nodes explored are much less than
that of Bi-Directional BFS (see BiBFS.mov and AstarM.mov).

9) What local search algorithm did you pick, and why? How are you representing the
maze/environment to be able to utilize this search algorithm? What design choices did
you have to make to make to apply this search algorithm to this problem?

We picked the hill climbing search algorithm because it is the one that we best under-
stood and it will definitely find a local maximum. In order to apply the hill climbing
algorithm, we created the same maze that was previously generated for all of the previous
parts and a copy of this same maze was generated. First, one maze was run through, DFS
for example (see Figures 9 and 10). We calculated the maximal fringe size for the original,
randomly generated maze and saved that value. Then, we took a copy of that very maze,
but randomly added an obstacle. We ran DFS through this edited maze and calculated
the maximal fringe size. If the maximal fringe size for the edited maze was larger than the
original maze, we determined that this was a harder maze to solve. Therefore, through a
recursive function, this edited, harder maze was saved as the new original maze and we
continued the process of comparing original mazes and ones with an added obstacle. If the
edited maze was not more difficult than the original, then we repeated the aforementioned
process with the same maze, not the edited one. We continued this process until we found
ten mazes that were consistently not more difficult. The same process was used for A*-
Manhattan except instead of analyzing the maximal fringe size, we analyzed the maximum
number of nodes explored (see Figures 11 and 12)

10) Unlike the problem of solving the maze, for which the ‘goal’ is well-defined, it is
difficult to know if you have constructed the ‘hardest’ maze. What kind of termination
conditions can you apply here to generate hard if not the hardest maze? What kind of
shortcomings or advantages do you anticipate from your approach?

We choose the terminating condition as 10 consecutive failures to produce a harder maze.
We predict that this number will lead us to the local maximum that we are looking for. We
think that for any state space of dim by dim, the number 10 would be significant enough
to indicate that the mazes would not be increasing in difficulty.

11) Do your results agree with your intuition?

The results agree with our intuition. When looking for the shortest path, DFS will typi-
cally display a path that travels mostly around the left side and bottom of the grid as a
result of the way it expands its children on the fringe— exploring an entire path before
backtracking. When executing our hill climbing algorithm with DFS we see that the path
that DFS is taking isn’t as direct, traveling throughout the grid instead of taking its usual
path. This is because in order for our hill climbing algorithm to progress, the fringe size of
DFS needs to become increasingly larger. As this happens, more children in the fringe need
to be expanded causing DFS to explore other routes around obstacles in order to reach

6

the goal cell. The hill climbing algorithm followed the same logic for A*-Manhattan. In
order to make the mazes harder, more obstacles had to be added. As more obstacles were
added, A*-Manhattan began to not travel along the most optimum path, which meant that
it was expanding more nodes. Whenever the newest state of A*-Manhattan had explored
more nodes, the hill climbing algorithm continued until our aforementioned terminating
condition was met.

Figure 9 Figure 10

Figure 11 Figure 12

12) Generate a number of mazes at the dimension dim and density p0 as in Section 2. Be
sure to generate a new maze and a new starting location for the fire each time. Please
discard any maze where there is no path from the initial position of the agent to the initial
position of the fire - for these mazes, the fire will never catch the agent and the agent is
not in any danger. For each strategy, plot a graph of ‘average successes vs flammability
q ’. Note, for each test value of q, you will need to generate multiple mazes to collect data.
Does re-computing your path like this have any benefit, ultimately?

This absolutely helps, as seen in Figure 13. Even though there is not a significant im-
provement between strategies two and three, both are still much better than strategy one,
where the path doesn’t account for the fire at all.

7

Figure 13: Strat 2 and 3 are better than Strat 1. Strat 2 and 3 perform similarly until 0.2
and then Strat 3 performs the best overall.

13) Come up with your own strategy to solve this problem, and try to beat both the above
strategies. How can you formulate the problem in an approachable way? How can you
apply the algorithms discussed? Note, Strategy 1 does not account for the changing state
of the fire, but Strategy 2 does. But Strategy 2 does not account for how the fire is going
to look in the future. How could you include that?

To improve strategy one, we included a check to make sure that the maze does not move
into a box that is on fire and we calculated the shortest path to the end each time using the
Manhattan hueristic. Strategy three predicts where the fire will be using the probability
formula given in the assignment. We added this probability as a part of the heuristic to
decide which square we should travel to. Ideally, one would want to choose a spot that
has 0 flammability. The Manhattan heuristic gives us the distance and then p is added
to that to create a fire heuristic. For example, consider if the following two moves can be
made: down and right. The Manhattan heuristic for these two moves is the same but the
probability of the right block catching on fire is 0.866% and the probability of the down
block catching on fire is 0.333%. The heuristic allows the program to make the decision
to go down instead. The fastest path still has most of the heuristic weight, but the added
flexibility incentive that helps predict future fires allows for the program to have a higher
general success rate.

8

,Member Contributions:,

Part 1: William
Part 2: William, Ilana, Abinaya
Part 3: Ilana
Part 4: Abinaya

9

	Environments and Algorithms
	Analysis and Comparison
	Generating Hard Mazes
	What If The Maze Were On Fire?

