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Final Question 2 
 
• For each of the 10 states, what is the optimal utility (long term expected discounted value) 

available in that state (i.e., U ∗ (state))?  
 
Given a state s, taking action a in our action set A(s) will move us to state s’ with probability 
"!,!!! . In our case the states are New – Dead, and our action set is to either use if we are in states 
New – Used8 or replace if we are in states Used1 – Dead. Performing an action also has a reward 
associated to it, #",!, which is positive is we use, and negative if we replace. Therefore, given a β, 
we can iteratively calculate an estimate for the optimal utility of the sequence by finding 
updating the utility of each step based on choosing the action that will provide us the greatest 
utility, factoring in future situations. This iterative process was calculated by using the following 
equation: 
 

$$%&∗ (&) = max!∈)(") ,#",! + ./"","!!
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$$∗(&,)0 

 
As seen, I am updating the optimal utility of a step s, $$%&∗ (&), with the maximum argument of 
what the expected reward is for that action, plus the sum of all expected future utility of taking 
that action (in this case the sum has only one term if the machine is replaced, and has two terms 
if the machine is used, since we either move on or stay put). This equation also reveals to us the 
relevance of β, as the higher β is, the more the future has to be taken into account, potentially 
changing our decision process. Since β is relatively high from the start, I expect that the optimal 
policy I will find will indicate to replace sooner rather than later. 
 
Using the information provided in the problem, I first found when the utility of the system would 
converge. I did this by running my algorithm over a large set of restarts, ranging from 0 to 100, 
and plotting the results of each step (see Figure 1). From my results, I found that the optimal 
number of restarts with β = 0.9 was around 50.  
 



 
 

 
I then ran my algorithm for this many restart and found the optimal utilities for each step (see 
Figure 2). These results tell us the long term expected value we would get for progressing to that 
step. It can be seen that the long term expected utility of each step slowly decreases as we keep 
using the machine (as expected). 
 

 
 

 
• What is the optimal policy that gives you this optimal utility - i.e., in each state, what is the 

best action to take in that state?  
 

To find the optimal policy of each step, I kept track of the moves made at each instance over the 
50 steps; either use or replace (see Figure 3). We can see that in this situation we would use our 
machine for the steps New – Used4 and replace it at Used5. The steps Used6 – Dead would 
never need to be considered since we will always replace at Used41. To be sure that this policy is 
optimal for the number of replacements used, I replicated the data with 99 replacements and still 
found the results to be the same (see Figure 4). It can be seen that neither the uses nor 

 
1 In the miraculous case we end up in any of states Used6 – Dead, we would obviously replace no matter what. 

Figure 1. Convergence of Utility 

Figure 2. Optimal Utility 
 



replacements for Used6 – Dead increase, indicating that we never even get to them. Only the 
replacements of Used5 increases, which confirms that the optimal policy would be to replace at 
Used5 for β = 0.9. 
 

 
 
 

 

 
 
 
 
• For different values of β (such that 0 < β < 1), the utility or value of being in certain states 

will change. However, the optimal policy may not. Compare the optimal policy for β = 0.1, 
0.3, 0.5, 0.7, 0.9, 0.99, etc. Is there a policy that is optimal for all sufficiently large β? Does 
this policy make sense? Explain. 

 
This time I did the same process for calculating the optimal policy, but changed the value of β. I 
used the recommended values 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99, as well as 0.95 and 12 to add some 
more ‘high value’ β’s (see Figure 5). Each sequence used the optimal number of restarts 
calculated above, and we can see varying results for the optimal policy depending on the value of 
β. For 0 < β £ 0.7, we can see that the optimal policy is always to use the machine until it is 
Dead, and only then will we replace it. This does seem to make sense, as for a lower β, the future 
is not as important, and we will keep using the machine until it breaks. For a ‘sufficiently large’ 
β, (i.e. 0.7 < β < 1), we find that the policy starts to change and force us to make earlier 
replacements of our machine. Again, this agrees with intuition, as we would want to replace the 
machine sooner if we knew the future mattered more. If, for example, we needed this machine to 
perform tasks for us in a time crunch, we would need it to be as efficient as possible in the time 
we are given, so we would find ourselves replacing it more frequently than if we had less of a 
time constraint. It is hard to define an exact optimal policy to follow for all ‘sufficiently large’ β 
given how small deviations in β can cause the policy to change pretty immediately. For example, 
moving from β = 0.9 to β = 0.95 changes the policy from replace at Used5 to replace at Used4. 
Moving further from β = 0.95 to β = 0.99 changes the policy again from replace at Used4 to 
replace at Used3. Therefore, I would conclude there isn’t an optimal policy that perfectly 
encapsulates all of the ‘sufficiently large’ β’s. If I had to pick one, I would potentially argue to 
replace at Used4, since it is the median of the large β’s, although again using this policy for β = 
0.9, for instance, would cause us to be replacing early and not getting the most bang for our 
buck, to say. 
 
 

 
2 Even though we are considering 0 < β < 1, I included this to see what the upper limit looks like. 

Figure 3. Optimal Policy 
 

Figure 4. Optimal Policy for Larger Replacements 
 



 
 Figure 5. Optimal Policy for a Range of Beta’s 

 



In [152]: import numpy as np
import matplotlib.pyplot as plt

Define the Algorithm:



In [153]: # Formula's based off of the 'ValueIteration' Notes
def MDP(sequence, index, beta, numReplaced, numUsed): 
     
    #variable to check if we replaced the robot 
    replaced = False 
     
    ### the NEW state ### 
    if index == 0: 
        # USE 
        reward = 100 
         
        # find the utility of using the machine 
        use_util = reward + beta*sequence[index + 1] 
         
        arg_max = use_util 
         
        numUsed[index] += 1 
         
        sequence[index] = arg_max 
         
    ### the DEAD state ### 
    elif index == 9: 
     
        # REPLACE 
        reward = -255 
         
        # find the utility of replacing the machine 
        replace_util = reward + beta*sequence[0] 
         
        arg_max = replace_util 
         
        numReplaced[index] += 1 
         
        sequence[index] = arg_max 
         
        # keep track that we replaced the machine 
        replaced = True 
         
    ### the USE_1 - USE_8 states ### 
    else: 
         
        # USE 
        reward = 100 - 10*index 
        prob_transition = 0.1*index 
        prob_stay = 1 - prob_transition 
         
        # find the utility of using the machine 
        use_util = reward + beta*prob_transition*sequence[index + 1] + b
eta*prob_stay*sequence[index] 
         
        # REPLACE 
        reward = -255 
         
        # find the utility of replacing the machine 
        replace_util = reward + beta*sequence[0] 
         



        # get the argmax and choose this 
        arg_max = max(use_util,replace_util) 
        sequence[index] = arg_max 
         
        # if we replaced we need to keep track 
        if arg_max == replace_util: 
            numReplaced[index] += 1 
            replaced = True 
             
        # if we used we need to keep track 
        else: 
            numUsed[index] += 1 
         
    return replaced, numReplaced, numUsed 
 
# lets us set the beta and number of runs through
def main(beta, numRuns): 
    numRestarts = 0 
    sequence = np.zeros(10) 
     
    # these keep track of decisions made for each step 
    numReplaced = np.zeros(10) 
    numUsed = np.zeros(10) 
     
    # run until we have restarted the number of times specified 
    while numRestarts < numRuns: 
        # step through the sequence 
        for index in range(10): 
            replaced, numReplaced, numUsed = MDP(sequence, index, beta, 
numReplaced, numUsed) 
             
            # if we replaced the machine, add 1 to number of restarts an
d break the for loop 
            if replaced: 
                numRestarts += 1 
                break 
                 
    return sequence, numReplaced, numUsed

Analysis:



In [154]: print("Running through once for beta = 9:")
print() 
 
sequence, numReplaced, numUsed = main(0.9, 1)
for item in sequence: 
    print("UTILITY OF STEP", np.where(sequence == item)[0][0], ":",item) 
     
print() 
     
print("NUM TIMES REPLACED:", numReplaced)
print("NUM TIMES USED:    ", numUsed) 
 
print()
print("We don't have enough information to determine optimal policy for
 each step yet... so let's find the convergence")

Running through once for beta = 9: 
 
UTILITY OF STEP 0 : 100.0 
UTILITY OF STEP 1 : 90.0 
UTILITY OF STEP 2 : 80.0 
UTILITY OF STEP 3 : 70.0 
UTILITY OF STEP 4 : 60.0 
UTILITY OF STEP 5 : 50.0 
UTILITY OF STEP 6 : 40.0 
UTILITY OF STEP 7 : 30.0 
UTILITY OF STEP 8 : 20.0 
UTILITY OF STEP 9 : -165.0 
 
NUM TIMES REPLACED: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] 
NUM TIMES USED:     [1. 1. 1. 1. 1. 1. 1. 1. 1. 0.] 
 
We don't have enough information to determine optimal policy for each s
tep yet... so let's find the convergence 



In [155]: # Find Convergence for a fixed beta 
 
x = np.linspace(0,100,101)
Utility_0,Utility_1,Utility_2,Utility_3,Utility_4,Utility_5,Utility_6,Ut
ility_7,Utility_8,Utility_9 = [],[],[],[],[],[],[],[],[],[]
for item in x: 
    sequence = main(0.9, item)[0] 
    Utility_0.append(sequence[0]) 
    Utility_1.append(sequence[1]) 
    Utility_2.append(sequence[2]) 
    Utility_3.append(sequence[3]) 
    Utility_4.append(sequence[4]) 
    Utility_5.append(sequence[5]) 
    Utility_6.append(sequence[6]) 
    Utility_7.append(sequence[7]) 
    Utility_8.append(sequence[8]) 
    Utility_9.append(sequence[9]) 
     
plt.plot(x, Utility_0, label = 'Utility_New')
plt.plot(x, Utility_1, label = 'Utility_1')
plt.plot(x, Utility_2, label = 'Utility_2')
plt.plot(x, Utility_3, label = 'Utility_3')
plt.plot(x, Utility_4, label = 'Utility_4')
plt.plot(x, Utility_5, label = 'Utility_5')
plt.plot(x, Utility_6, label = 'Utility_6')
plt.plot(x, Utility_7, label = 'Utility_7')
plt.plot(x, Utility_8, label = 'Utility_8')
plt.plot(x, Utility_9, label = 'Utility_Dead')
plt.xlabel('Restarts',fontsize=18)
plt.ylabel('Utility',fontsize=18)
plt.title("Utility vs. Restarts", fontsize = 24)
plt.legend(loc = 'lower right')
plt.show() 
 
print("Our data appears to hit the limit around 50, so let's set that as 
the optimal number of runs")



Our data appears to hit the limit around 50, so let's set that as the o
ptimal number of runs 



In [156]: print("Running through optimal times for beta = 0.9:")
print() 
 
sequence, numReplaced, numUsed = main(0.9, 50)
for item in sequence:  
    print("UTILITY OF STEP", np.where(sequence == item)[0][0], ":",item) 
 
print() 
 
print("NUM TIMES REPLACED:", numReplaced)
print("NUM TIMES USED:    ", numUsed) 
 
print()
print("We can determine optimal policy based on comparing the number of
 times a spot was replaced or used") 
 
print()
print("Just to make sure it doesn't change for larger replacements...")
sequence, numReplaced, numUsed = main(0.9, 99) 
 
print("NUM TIMES REPLACED:", numReplaced)
print("NUM TIMES USED:    ", numUsed)

Running through optimal times for beta = 0.9: 
 
UTILITY OF STEP 0 : 796.0520451309613 
UTILITY OF STEP 1 : 773.6913341143916 
UTILITY OF STEP 2 : 636.3358629764357 
UTILITY OF STEP 3 : 546.8342214100409 
UTILITY OF STEP 4 : 491.0321809818268 
UTILITY OF STEP 5 : 461.4468406178652 
UTILITY OF STEP 6 : 202.552442804662 
UTILITY OF STEP 7 : 30.452190000000087 
UTILITY OF STEP 8 : -27.218999999999966 
UTILITY OF STEP 9 : -165.0 
 
NUM TIMES REPLACED: [ 0.  0.  0.  0.  0. 42.  4.  1.  2.  1.] 
NUM TIMES USED:     [50. 50. 50. 50. 50.  8.  4.  3.  1.  0.] 
 
We can determine optimal policy based on comparing the number of times 
a spot was replaced or used 
 
Just to make sure it doesn't change for larger replacements... 
NUM TIMES REPLACED: [ 0.  0.  0.  0.  0. 91.  4.  1.  2.  1.] 
NUM TIMES USED:     [99. 99. 99. 99. 99.  8.  4.  3.  1.  0.] 



In [157]: # different betas 
 
beta_list = [.1,.3,.5,.7,.9,.95,.99, 1]
for item in beta_list: 
    if item == 0.9: 
        print('-------------------------Large Betas---------------------
----') 
    sequence, numReplaced, numUsed = main(item, 50) 
    print("For beta =", item) 
    print("NUM TIMES REPLACED:", numReplaced) 
    print("NUM TIMES USED:    ", numUsed) 
    print()

In [ ]:   

For beta = 0.1 
NUM TIMES REPLACED: [ 0.  0.  0.  0.  0.  0.  0.  0.  0. 50.] 
NUM TIMES USED:     [50. 50. 50. 50. 50. 50. 50. 50. 50.  0.] 
 
For beta = 0.3 
NUM TIMES REPLACED: [ 0.  0.  0.  0.  0.  0.  0.  0.  0. 50.] 
NUM TIMES USED:     [50. 50. 50. 50. 50. 50. 50. 50. 50.  0.] 
 
For beta = 0.5 
NUM TIMES REPLACED: [ 0.  0.  0.  0.  0.  0.  0.  0.  0. 50.] 
NUM TIMES USED:     [50. 50. 50. 50. 50. 50. 50. 50. 50.  0.] 
 
For beta = 0.7 
NUM TIMES REPLACED: [ 0.  0.  0.  0.  0.  0.  0.  0.  0. 50.] 
NUM TIMES USED:     [50. 50. 50. 50. 50. 50. 50. 50. 50.  0.] 
 
-------------------------Large Betas------------------------- 
For beta = 0.9 
NUM TIMES REPLACED: [ 0.  0.  0.  0.  0. 42.  4.  1.  2.  1.] 
NUM TIMES USED:     [50. 50. 50. 50. 50.  8.  4.  3.  1.  0.] 
 
For beta = 0.95 
NUM TIMES REPLACED: [ 0.  0.  0.  0. 42.  3.  1.  2.  1.  1.] 
NUM TIMES USED:     [50. 50. 50. 50.  8.  5.  4.  2.  1.  0.] 
 
For beta = 0.99 
NUM TIMES REPLACED: [ 0.  0.  0. 40.  4.  2.  1.  1.  1.  1.] 
NUM TIMES USED:     [50. 50. 50. 10.  6.  4.  3.  2.  1.  0.] 
 
For beta = 1 
NUM TIMES REPLACED: [ 0.  0.  0. 41.  3.  2.  1.  1.  1.  1.] 
NUM TIMES USED:     [50. 50. 50.  9.  6.  4.  3.  2.  1.  0.] 
 


